These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20589291)

  • 41. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved solid-phase microextraction device for use in on-line immunoaffinity capillary electrophoresis.
    Guzman NA
    Electrophoresis; 2003 Nov; 24(21):3718-27. PubMed ID: 14613197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-speed free-flow electrophoresis on chip.
    Zhang CX; Manz A
    Anal Chem; 2003 Nov; 75(21):5759-66. PubMed ID: 14588015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs).
    Ota R; Yamada K; Suzuki K; Citterio D
    Analyst; 2018 Feb; 143(3):643-653. PubMed ID: 29185559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns.
    Kiplagat IK; Kubán P; Pelcová P; Kubán V
    J Chromatogr A; 2010 Jul; 1217(31):5116-23. PubMed ID: 20580367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles.
    Chun J; Xu C; Li Q; Chen Y; Zhao Q; Yang W; Wen R; Ma X
    Langmuir; 2022 Jan; 38(1):352-362. PubMed ID: 34812042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics.
    Siegrist J; Amasia M; Singh N; Banerjee D; Madou M
    Lab Chip; 2010 Apr; 10(7):876-86. PubMed ID: 20300674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis.
    Xu ZR; Lan Y; Fan XF; Li Q
    Talanta; 2009 Apr; 78(2):448-52. PubMed ID: 19203607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue".
    Sohn YS; Goodey A; Anslyn EV; McDevitt JT; Shear JB; Neikirk DP
    Biosens Bioelectron; 2005 Aug; 21(2):303-12. PubMed ID: 16023957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calorimetric biosensors with integrated microfluidic channels.
    Zhang Y; Tadigadapa S
    Biosens Bioelectron; 2004 Jul; 19(12):1733-43. PubMed ID: 15142608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A general form of capillary rise equation in micro-grooves.
    Bamorovat Abadi G; Bahrami M
    Sci Rep; 2020 Nov; 10(1):19709. PubMed ID: 33184388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1000-fold sample focusing on paper-based microfluidic devices.
    Rosenfeld T; Bercovici M
    Lab Chip; 2014 Dec; 14(23):4465-74. PubMed ID: 25256832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.