BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20589740)

  • 1. Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations.
    Rui H; Im W
    J Comput Chem; 2010 Dec; 31(16):2859-67. PubMed ID: 20589740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers.
    Rui H; Lee J; Im W
    Biophys J; 2009 Aug; 97(3):787-95. PubMed ID: 19651037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR.
    Tang M; Waring AJ; Lehrer RI; Hong M
    Biophys J; 2006 May; 90(10):3616-24. PubMed ID: 16500957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation.
    Khandelia H; Kaznessis YN
    Biochim Biophys Acta; 2007 Mar; 1768(3):509-20. PubMed ID: 17254546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-hairpin restraint potentials for calculations of potentials of mean force as a function of beta-hairpin tilt, rotation, and distance.
    Lee J; Ham S; Im W
    J Comput Chem; 2009 Jun; 30(8):1334-43. PubMed ID: 19009593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of protegrin-1 with lipid bilayers: membrane thinning effect.
    Jang H; Ma B; Woolf TB; Nussinov R
    Biophys J; 2006 Oct; 91(8):2848-59. PubMed ID: 16861271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study.
    Wi S; Kim C
    J Phys Chem B; 2008 Sep; 112(36):11402-14. PubMed ID: 18700738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR.
    Buffy JJ; Waring AJ; Lehrer RI; Hong M
    Biochemistry; 2003 Nov; 42(46):13725-34. PubMed ID: 14622019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane curvature change induced by an antimicrobial peptide detected by 31P exchange NMR.
    Marasinghe PA; Buffy JJ; Schmidt-Rohr K; Hong M
    J Phys Chem B; 2005 Nov; 109(46):22036-44. PubMed ID: 16853861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model.
    Sayyed-Ahmad A; Kaznessis YN
    PLoS One; 2009; 4(3):e4799. PubMed ID: 19277199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1.
    Buffy JJ; McCormick MJ; Wi S; Waring A; Lehrer RI; Hong M
    Biochemistry; 2004 Aug; 43(30):9800-12. PubMed ID: 15274634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect.
    Jang H; Ma B; Nussinov R
    BMC Struct Biol; 2007 Apr; 7():21. PubMed ID: 17407565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+.
    Buffy JJ; Hong T; Yamaguchi S; Waring AJ; Lehrer RI; Hong M
    Biophys J; 2003 Oct; 85(4):2363-73. PubMed ID: 14507700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch.
    Park SH; Opella SJ
    J Mol Biol; 2005 Jul; 350(2):310-8. PubMed ID: 15936031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.