These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20589774)

  • 1. 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization.
    Zhao G; He Y; Li Y
    Adv Mater; 2010 Oct; 22(39):4355-8. PubMed ID: 20589774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.
    Aoki A; Naruse M; Abe T
    Chemphyschem; 2013 Jul; 14(10):2317-20. PubMed ID: 23671012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials.
    Lee JM; Kwon BH; Park HI; Kim H; Kim MG; Park JS; Kim ES; Yoo S; Jeon DY; Kim SO
    Adv Mater; 2013 Apr; 25(14):2011-7. PubMed ID: 23315683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells.
    He Y; Chen HY; Hou J; Li Y
    J Am Chem Soc; 2010 Feb; 132(4):1377-82. PubMed ID: 20055460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient polymer solar cells based on poly(3-hexylthiophene) and indene-C₆₀ bisadduct fabricated with non-halogenated solvents.
    Guo X; Zhang M; Cui C; Hou J; Li Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8190-8. PubMed ID: 24813668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the electron mobility in polymer solar cells with different fullerene acceptors.
    Gao D; Djukic B; Shi W; Bridges CR; Kozycz LM; Seferos DS
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8038-43. PubMed ID: 23845022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity.
    Yan H; Li D; He C; Wei Z; Yang Y; Li Y
    Nanoscale; 2013 Dec; 5(23):11649-56. PubMed ID: 24096725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced performance of polymer solar cells by employing a ternary cascade energy structure.
    An Q; Zhang F; Li L; Zhuo Z; Zhang J; Tang W; Teng F
    Phys Chem Chem Phys; 2014 Aug; 16(30):16103-9. PubMed ID: 24967655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-processed nickel acetate as hole collection layer for polymer solar cells.
    Tan Z; Zhang W; Qian D; Cui C; Xu Q; Li L; Li S; Li Y
    Phys Chem Chem Phys; 2012 Nov; 14(41):14217-23. PubMed ID: 22825321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coating on a cold substrate largely enhances power conversion efficiency of the bulk heterojunction solar cell.
    Oh JY; Lee TI; Myoung JM; Jeong U; Baik HK
    Macromol Rapid Commun; 2011 Jul; 32(14):1066-71. PubMed ID: 21542045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [70]fullerene-based materials for organic solar cells.
    Troshin PA; Hoppe H; Peregudov AS; Egginger M; Shokhovets S; Gobsch G; Sariciftci NS; Razumov VF
    ChemSusChem; 2011 Jan; 4(1):119-24. PubMed ID: 21226221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells.
    Troshin PA; Khakina EA; Egginger M; Goryachev AE; Troyanov SI; Fuchsbauer A; Peregudov AS; Lyubovskaya RN; Razumov VF; Sariciftci NS
    ChemSusChem; 2010 Mar; 3(3):356-66. PubMed ID: 20077464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells.
    Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fullerene-bisadduct acceptors for polymer solar cells.
    Li Y
    Chem Asian J; 2013 Oct; 8(10):2316-28. PubMed ID: 23853151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(3-octylthiophene)/fullerene heterojunction solar cell incorporating carbon nanotubes.
    Kalita G; Adhikari S; Aryal HR; Wakita K; Umeno M
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3844-8. PubMed ID: 20355377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.
    Wei HY; Huang JH; Ho KC; Chu CW
    ACS Appl Mater Interfaces; 2010 May; 2(5):1281-5. PubMed ID: 20450193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-processed fullerene-based organic Schottky junction devices for large-open-circuit-voltage organic solar cells.
    Yang B; Guo F; Yuan Y; Xiao Z; Lu Y; Dong Q; Huang J
    Adv Mater; 2013 Jan; 25(4):572-7. PubMed ID: 23125058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends.
    Gevaerts VS; Furlan A; Wienk MM; Turbiez M; Janssen RA
    Adv Mater; 2012 Apr; 24(16):2130-4. PubMed ID: 22438114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of annealing process on P3HT:PCBM-based polymer solar cells using optical and impedance spectroscopy.
    Kim JY; Noh S; Kwak J; Lee C
    J Nanosci Nanotechnol; 2013 May; 13(5):3360-4. PubMed ID: 23858859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.