These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20589842)

  • 1. Systematizing the generation of missing metabolic knowledge.
    Orth JD; Palsson BØ
    Biotechnol Bioeng; 2010 Oct; 107(3):403-12. PubMed ID: 20589842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions.
    Orth JD; Palsson B
    BMC Syst Biol; 2012 May; 6():30. PubMed ID: 22548736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.
    Krumholz EW; Libourel IG
    J Biol Chem; 2015 Jul; 290(31):19197-207. PubMed ID: 26041773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions.
    Vayena E; Chiappino-Pepe A; MohammadiPeyhani H; Francioli Y; Hadadi N; Ataman M; Hafner J; Pavlou S; Hatzimanikatis V
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2211197119. PubMed ID: 36343249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning.
    Chen C; Liao C; Liu YY
    Nat Commun; 2023 Apr; 14(1):2375. PubMed ID: 37185345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions.
    Rolfsson O; Palsson BØ; Thiele I
    BMC Syst Biol; 2011 Oct; 5():155. PubMed ID: 21962087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.
    Biggs MB; Papin JA
    PLoS Comput Biol; 2017 Mar; 13(3):e1005413. PubMed ID: 28263984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale reconstructions to assess metabolic phylogeny and organism clustering.
    Schulz C; Almaas E
    PLoS One; 2020; 15(12):e0240953. PubMed ID: 33373364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling.
    diCenzo GC; Mengoni A; Fondi M
    ACS Synth Biol; 2019 Jan; 8(1):158-169. PubMed ID: 30525460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.
    Prigent S; Frioux C; Dittami SM; Thiele S; Larhlimi A; Collet G; Gutknecht F; Got J; Eveillard D; Bourdon J; Plewniak F; Tonon T; Siegel A
    PLoS Comput Biol; 2017 Jan; 13(1):e1005276. PubMed ID: 28129330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries.
    Pan S; Reed JL
    Curr Opin Biotechnol; 2018 Jun; 51():103-108. PubMed ID: 29278837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
    Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C
    Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEF: an automated dead-end filling approach based on quasi-endosymbiosis.
    Liu L; Zhang Z; Sheng T; Chen M
    Bioinformatics; 2017 Feb; 33(3):405-413. PubMed ID: 28171511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling.
    Österlund T; Nookaew I; Bordel S; Nielsen J
    BMC Syst Biol; 2013 Apr; 7():36. PubMed ID: 23631471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types.
    Seif Y; Monk JM; Mih N; Tsunemoto H; Poudel S; Zuniga C; Broddrick J; Zengler K; Palsson BO
    PLoS Comput Biol; 2019 Jan; 15(1):e1006644. PubMed ID: 30625152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux coupling analysis of metabolic networks is sensitive to missing reactions.
    Marashi SA; Bockmayr A
    Biosystems; 2011 Jan; 103(1):57-66. PubMed ID: 20888889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-scale fused hypergraph convolution-based hyperedge prediction model for predicting missing reactions in genome-scale metabolic networks.
    Huang W; Yang F; Zhang Q; Liu J
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39101499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions.
    Schmidt R; Waschina S; Boettger-Schmidt D; Kost C; Kaleta C
    Bioinformatics; 2015 Feb; 31(3):373-81. PubMed ID: 25286919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models.
    Ataman M; Hernandez Gardiol DF; Fengos G; Hatzimanikatis V
    PLoS Comput Biol; 2017 Jul; 13(7):e1005444. PubMed ID: 28727725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE.
    Kim HU; Kim TY; Lee SY
    Mol Biosyst; 2010 Feb; 6(2):339-48. PubMed ID: 20094653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.