These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20589885)

  • 1. Increased voluntary drive is associated with changes in common oscillations from 13 to 60 Hz of interference but not rectified electromyography.
    Neto OP; Baweja HS; Christou EA
    Muscle Nerve; 2010 Sep; 42(3):348-54. PubMed ID: 20589885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force.
    McManus L; Flood MW; Lowery MM
    J Neurophysiol; 2019 Sep; 122(3):1147-1162. PubMed ID: 31365308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectification of the EMG signal impairs the identification of oscillatory input to the muscle.
    Neto OP; Christou EA
    J Neurophysiol; 2010 Feb; 103(2):1093-103. PubMed ID: 20032241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography.
    Gross J; Tass PA; Salenius S; Hari R; Freund HJ; Schnitzler A
    J Physiol; 2000 Sep; 527 Pt 3(Pt 3):623-31. PubMed ID: 10990546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force control is related to low-frequency oscillations in force and surface EMG.
    Moon H; Kim C; Kwon M; Chen YT; Onushko T; Lodha N; Christou EA
    PLoS One; 2014; 9(11):e109202. PubMed ID: 25372038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aging on force variability, single motor unit discharge patterns, and the structure of 10, 20, and 40 Hz EMG activity.
    Vaillancourt DE; Larsson L; Newell KM
    Neurobiol Aging; 2003; 24(1):25-35. PubMed ID: 12493548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.
    Yoshitake Y; Shinohara M
    Exp Brain Res; 2013 Nov; 231(3):267-76. PubMed ID: 24002673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of oscillatory force tasks: Low-frequency oscillations in force and muscle activity.
    Park SH; Kim C; Yacoubi B; Christou EA
    Hum Mov Sci; 2019 Apr; 64():89-100. PubMed ID: 30690253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude cancellation influences the association between frequency components in the neural drive to muscle and the rectified EMG signal.
    Dideriksen JL; Farina D
    PLoS Comput Biol; 2019 May; 15(5):e1006985. PubMed ID: 31050667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue-related modulation of low-frequency common drive to motor units.
    Hwang IS; Lin YT; Huang CC; Chen YC
    Eur J Appl Physiol; 2020 Jun; 120(6):1305-1317. PubMed ID: 32297005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory interaction between the hand area of human primary motor cortex and finger muscles during steady-state isometric contraction.
    Lim M; Kim JS; Chung CK
    Clin Neurophysiol; 2011 Nov; 122(11):2246-53. PubMed ID: 21493129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.
    Sosnoff JJ; Vaillancourt DE; Larsson L; Newell KM
    Behav Brain Res; 2005 Mar; 158(2):301-10. PubMed ID: 15698897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans.
    Negro F; Farina D
    J Physiol; 2011 Feb; 589(Pt 3):629-37. PubMed ID: 21135042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions.
    Dideriksen JL; Enoka RM; Farina D
    J Appl Physiol (1985); 2011 Aug; 111(2):485-94. PubMed ID: 21596915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task.
    Kristeva-Feige R; Fritsch C; Timmer J; Lücking CH
    Clin Neurophysiol; 2002 Jan; 113(1):124-31. PubMed ID: 11801434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.
    Ushiyama J; Takahashi Y; Ushiba J
    J Appl Physiol (1985); 2010 Oct; 109(4):1086-95. PubMed ID: 20689093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated EMG Oscillations between Antagonists during Cocontraction in Men.
    Yoshitake Y; Kanehisa H; Shinohara M
    Med Sci Sports Exerc; 2017 Mar; 49(3):538-548. PubMed ID: 28212264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical correlate of the Piper rhythm in humans.
    Brown P; Salenius S; Rothwell JC; Hari R
    J Neurophysiol; 1998 Dec; 80(6):2911-7. PubMed ID: 9862895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans.
    Lim M; Kim JS; Kim M; Chung CK
    Clin Neurophysiol; 2014 Oct; 125(10):2036-45. PubMed ID: 24618217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.