BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20590108)

  • 1. Nanoparticle dissolution from the particle perspective: insights from particle sizing measurements.
    Elzey S; Grassian VH
    Langmuir; 2010 Aug; 26(15):12505-8. PubMed ID: 20590108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow.
    Lenggoro IW; Widiyandari H; Hogan CJ; Biswas P; Okuyama K
    Anal Chim Acta; 2007 Mar; 585(2):193-201. PubMed ID: 17386665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution and nanoparticle generation behavior of Be-associated materials in synthetic lung fluid using inductively coupled plasma mass spectroscopy and flow field-flow fractionation.
    Huang W; Fernandez D; Rudd A; Johnson WP; Deubner D; Sabey P; Storrs J; Larsen R
    J Chromatogr A; 2011 Jul; 1218(27):4149-59. PubMed ID: 21167491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.
    Glover RD; Miller JM; Hutchison JE
    ACS Nano; 2011 Nov; 5(11):8950-7. PubMed ID: 21985489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect.
    Schmidt J; Vogelsberger W
    J Phys Chem B; 2006 Mar; 110(9):3955-63. PubMed ID: 16509682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical stability of nanometer-scale Pt particles in acidic environments.
    Tang L; Han B; Persson K; Friesen C; He T; Sieradzki K; Ceder G
    J Am Chem Soc; 2010 Jan; 132(2):596-600. PubMed ID: 20017546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells.
    Cronholm P; Midander K; Karlsson HL; Elihn K; Wallinder IO; Möller L
    Nanotoxicology; 2011 Jun; 5(2):269-81. PubMed ID: 21117831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis and size control of spherical aggregates composed of Cu(2)O nanoparticles.
    Lee WR; Piao L; Park CH; Lim YS; Do YR; Yoon S; Kim SH
    J Colloid Interface Sci; 2010 Feb; 342(1):198-201. PubMed ID: 19931090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different water conditions on dissolution of nanosilver.
    Chen SF; Zhang H; Lin QY
    Water Sci Technol; 2013; 68(8):1745-50. PubMed ID: 24185055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles.
    Molina R; Al-Salama Y; Jurkschat K; Dobson PJ; Thompson IP
    Chemosphere; 2011 Apr; 83(4):545-51. PubMed ID: 21220148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle size in a limestone-hydrochloric acid reaction system.
    Sun B; Zhou Q; Chen X; Xu T; Hui S
    J Hazard Mater; 2010 Jul; 179(1-3):400-8. PubMed ID: 20363559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.
    Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Gray EP; Higgins CP; Ranville JF
    Environ Sci Technol; 2012 Nov; 46(22):12272-80. PubMed ID: 22780106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size.
    Sonavane G; Tomoda K; Makino K
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine).
    Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y
    Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.