BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20590180)

  • 1. Calculation of the first static hyperpolarizability tensor of three-dimensional periodic compounds with a local basis set: A comparison of LDA, PBE, PBE0, B3LYP, and HF results.
    Orlando R; Lacivita V; Bast R; Ruud K
    J Chem Phys; 2010 Jun; 132(24):244106. PubMed ID: 20590180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme.
    Ferrero M; Civalleri B; Rérat M; Orlando R; Dovesi R
    J Chem Phys; 2009 Dec; 131(21):214704. PubMed ID: 19968357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the dielectric constant epsilon and first nonlinear susceptibility chi((2)) of crystalline potassium dihydrogen phosphate by the coupled perturbed Hartree-Fock and coupled perturbed Kohn-Sham schemes as implemented in the CRYSTAL code.
    Lacivita V; Rérat M; Kirtman B; Ferrero M; Orlando R; Dovesi R
    J Chem Phys; 2009 Nov; 131(20):204509. PubMed ID: 19947696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: where it is shown how finite oligomer chains tend to the infinite periodic polymer.
    Lacivita V; Rèrat M; Orlando R; Ferrero M; Dovesi R
    J Chem Phys; 2012 Mar; 136(11):114101. PubMed ID: 22443743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the static electronic second hyperpolarizability or chi(3) tensor of three-dimensional periodic compounds with a local basis set.
    Orlando R; Ferrero M; Rérat M; Kirtman B; Dovesi R
    J Chem Phys; 2009 Nov; 131(18):184105. PubMed ID: 19916596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set.
    Zicovich-Wilson CM; Pascale F; Roetti C; Saunders VR; Orlando R; Dovesi R
    J Comput Chem; 2004 Nov; 25(15):1873-81. PubMed ID: 15376250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of Second Harmonic Generation for Crystalline Urea and KDP. An ab Initio Approach through the Coupled Perturbed Hartree-Fock/Kohn-Sham Scheme.
    Rérat M; Maschio L; Kirtman B; Civalleri B; Dovesi R
    J Chem Theory Comput; 2016 Jan; 12(1):107-13. PubMed ID: 26636615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4.
    De la Pierre M; Orlando R; Maschio L; Doll K; Ugliengo P; Dovesi R
    J Comput Chem; 2011 Jul; 32(9):1775-84. PubMed ID: 21469154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code.
    Ferrero M; Rérat M; Kirtman B; Dovesi R
    J Chem Phys; 2008 Dec; 129(24):244110. PubMed ID: 19123498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first and second static electronic hyperpolarizabilities of zigzag boron nitride nanotubes. An ab initio approach through the coupled perturbed Kohn-Sham scheme.
    Orlando R; Bast R; Ruud K; Ekström U; Ferrabone M; Kirtman B; Dovesi R
    J Phys Chem A; 2011 Nov; 115(45):12631-7. PubMed ID: 21699207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First hyperpolarizability of polymethineimine with long-range corrected functionals.
    Jacquemin D; Perpète EA; Medved' M; Scalmani G; Frisch MJ; Kobayashi R; Adamo C
    J Chem Phys; 2007 May; 126(19):191108. PubMed ID: 17523788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cubic response functions in time-dependent density functional theory.
    Jansik B; Sałek P; Jonsson D; Vahtras O; Agren H
    J Chem Phys; 2005 Feb; 122(5):54107. PubMed ID: 15740310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability.
    Suponitsky KY; Tafur S; Masunov AE
    J Chem Phys; 2008 Jul; 129(4):044109. PubMed ID: 18681636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio investigation of structure and cohesive energy of crystalline urea.
    Civalleri B; Doll K; Zicovich-Wilson CM
    J Phys Chem B; 2007 Jan; 111(1):26-33. PubMed ID: 17201425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does the B3LYP hybrid functional fail for metals?
    Paier J; Marsman M; Kresse G
    J Chem Phys; 2007 Jul; 127(2):024103. PubMed ID: 17640115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals.
    Labat F; Baranek P; Domain C; Minot C; Adamo C
    J Chem Phys; 2007 Apr; 126(15):154703. PubMed ID: 17461655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory.
    Neese F
    J Chem Phys; 2007 Oct; 127(16):164112. PubMed ID: 17979324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set.
    Paier J; Hirschl R; Marsman M; Kresse G
    J Chem Phys; 2005 Jun; 122(23):234102. PubMed ID: 16008425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+.
    Fouqueau A; Casida ME; Lawson Daku LM; Hauser A; Neese F
    J Chem Phys; 2005 Jan; 122(4):44110. PubMed ID: 15740238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.