These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20590204)

  • 21. Homogeneous water nucleation and droplet growth in methane and carbon dioxide mixtures at 235 K and 10 bar.
    Holten V; van Dongen ME
    J Chem Phys; 2010 May; 132(20):204504. PubMed ID: 20515097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation rates of methanol using the SAFT-0 equation of state.
    Obeidat A; Gharaibeh M; Ghanem H; Hrahsheh F; Al-Zoubi N; Wilemski G
    Chemphyschem; 2010 Dec; 11(18):3987-95. PubMed ID: 21117130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homogeneous water nucleation: Experimental study on pressure and carrier gas effects.
    Campagna MM; Hrubý J; van Dongen MEH; Smeulders DMJ
    J Chem Phys; 2020 Oct; 153(16):164303. PubMed ID: 33138427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation.
    Römer F; Kraska T
    J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study of homogeneous nucleation from the bismuth supersaturated vapor: evaluation of the surface tension of critical nucleus.
    Onischuk AA; Vosel SV; Borovkova OV; Baklanov AM; Karasev VV; di Stasio S
    J Chem Phys; 2012 Jun; 136(22):224506. PubMed ID: 22713056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple correction to the classical theory of homogeneous nucleation.
    Nadykto AB; Yu F
    J Chem Phys; 2005 Mar; 122(10):104511. PubMed ID: 15836336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Argon nucleation in a cryogenic supersonic nozzle.
    Sinha S; Bhabhe A; Laksmono H; Wölk J; Strey R; Wyslouzil B
    J Chem Phys; 2010 Feb; 132(6):064304. PubMed ID: 20151740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous nucleation of n-nonane and n-propanol mixtures: a comparison of classical nucleation theory and experiments.
    Gaman AI; Napari I; Winkler PM; Vehkamäki H; Wagner PE; Strey R; Viisanen Y; Kulmala M
    J Chem Phys; 2005 Dec; 123(24):244502. PubMed ID: 16396544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Re-evaluation of the pressure effect for nucleation in laminar flow diffusion chamber experiments with fluent and the fine particle model.
    Herrmann E; Hyvärinen AP; Brus D; Lihavainen H; Kulmala M
    J Phys Chem A; 2009 Feb; 113(8):1434-9. PubMed ID: 19191511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homogeneous nucleation with magic numbers: aluminum.
    Girshick SL; Agarwal P; Truhlar DG
    J Chem Phys; 2009 Oct; 131(13):134305. PubMed ID: 19814551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An algorithm for semi-empirical design of nucleation rate surface.
    Anisimova L; Anisimov M; Semin G; Turner P; Hopke PK
    J Colloid Interface Sci; 2005 Oct; 290(1):107-16. PubMed ID: 16122546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM.
    Herrmann E; Lihavainen H; Hyvärinen AP; Riipinen I; Wilck M; Stratmann F; Kulmala M
    J Phys Chem A; 2006 Nov; 110(45):12448-55. PubMed ID: 17091949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data evaluation of laminar flow diffusion chamber nucleation experiments with different computational methods.
    Mitrakos D; Zdímal V; Brus D; Housiadas C
    J Chem Phys; 2008 Aug; 129(5):054503. PubMed ID: 18698910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures.
    Görke H; Neitola K; Hyvärinen AP; Lihavainen H; Wölk J; Strey R; Brus D
    J Chem Phys; 2014 May; 140(17):174301. PubMed ID: 24811635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homogeneous nucleation of a homologous series of n-alkanes (C(i)H(2i+2), i=7-10) in a supersonic nozzle.
    Ghosh D; Bergmann D; Schwering R; Wölk J; Strey R; Tanimura S; Wyslouzil BE
    J Chem Phys; 2010 Jan; 132(2):024307. PubMed ID: 20095674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous Nucleation of n-Butanol Vapor on Submicrometer Particles of SiO2 and TiO2.
    Chen CC; Huang CC; Tao CJ
    J Colloid Interface Sci; 1999 Mar; 211(2):193-203. PubMed ID: 10049535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.