These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20590204)

  • 41. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mean-field kinetic nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2006 Mar; 124(12):124505. PubMed ID: 16599695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large scale molecular dynamics simulations of homogeneous nucleation.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Helmholtz free energy of a phase containing a sparse ensemble of heterophase clusters with application to nucleation theory.
    Tschudi HR
    J Phys Chem B; 2010 Mar; 114(9):3219-35. PubMed ID: 20148535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber.
    Fladerer A; Strey R
    J Chem Phys; 2006 Apr; 124(16):164710. PubMed ID: 16674160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring the discrepancies between experiment, theory, and simulation for the homogeneous gas-to-liquid nucleation of 1-pentanol.
    Nellas RB; Keasler SJ; Siepmann JI; Chen B
    J Chem Phys; 2010 Apr; 132(16):164517. PubMed ID: 20441298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of relative humidity on binary gas diffusion.
    Astrath NG; Shen J; Song D; Rohling JH; Astrath FB; Zhou J; Navessin T; Liu ZS; Gu CE; Zhao X
    J Phys Chem B; 2009 Jun; 113(24):8369-74. PubMed ID: 19514781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E
    J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Translation-rotation correction factor in the theory of homogeneous nucleation.
    Vosel SV; Onischuk AA; Purtov PA
    J Chem Phys; 2009 Nov; 131(20):204508. PubMed ID: 19947695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water nucleation: A comparison between some phenomenological theories and experiment.
    Bennett TP; Barrett JC
    J Chem Phys; 2012 Sep; 137(12):124702. PubMed ID: 23020345
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.
    Herrmann E; Brus D; Hyvärinen AP; Stratmann F; Wilck M; Lihavainen H; Kulmala M
    J Phys Chem A; 2010 Aug; 114(31):8033-42. PubMed ID: 20684574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Description of fluid dynamics and coupled transports in models of a laminar flow diffusion chamber.
    Trávníčková T; Havlica J; Ždímal V
    J Chem Phys; 2013 Aug; 139(6):064701. PubMed ID: 23947874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dependence of homogeneous nucleation rate on supersaturation.
    Girshick SL
    J Chem Phys; 2014 Jul; 141(2):024307. PubMed ID: 25028019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of scaling and kinetic equations to helium cluster size distributions: Homogeneous nucleation of a nearly ideal gas.
    Chaiken J; Goodisman J; Kornilov O; Peter Toennies J
    J Chem Phys; 2006 Aug; 125(7):074305. PubMed ID: 16942337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.