These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 20590245)

  • 61. Velocity dependent friction laws in contact mode atomic force microscopy.
    Stark RW; Schitter G; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):309-17. PubMed ID: 15231324
    [TBL] [Abstract][Full Text] [Related]  

  • 62. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.
    Larcheri S; Rocca F; Jandard F; Pailharey D; Graziola R; Kuzmin A; Purans J
    Rev Sci Instrum; 2008 Jan; 79(1):013702. PubMed ID: 18248034
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wear-less floating contact imaging of polymer surfaces.
    Knoll A; Rothuizen H; Gotsmann B; Duerig U
    Nanotechnology; 2010 May; 21(18):185701. PubMed ID: 20378942
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurement and Control System for Atomic Force Microscope Based on Quartz Tuning Fork Self-Induction Probe.
    Luo Y; Ding X; Chen T; Su T; Chen D
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677289
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes.
    Wutscher E; Giessibl FJ
    Rev Sci Instrum; 2011 Sep; 82(9):093703. PubMed ID: 21974590
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator.
    An T; Nishio T; Eguchi T; Ono M; Nomura A; Akiyama K; Hasegawa Y
    Rev Sci Instrum; 2008 Mar; 79(3):033703. PubMed ID: 18377011
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy.
    Pawlak R; Kawai S; Fremy S; Glatzel T; Meyer E
    J Phys Condens Matter; 2012 Feb; 24(8):084005. PubMed ID: 22310075
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probing the local structure and mechanical response of nanostructures using force modulation and nanofabrication.
    Price WJ; Kuo PK; Lee TR; Colorado R; Ying ZC; Liu GY
    Langmuir; 2005 Aug; 21(18):8422-8. PubMed ID: 16114952
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In-plane contributions to phase contrast in intermittent contact atomic force microscopy.
    Marcus MS; Eriksson MA; Sasaki DY; Carpick RW
    Ultramicroscopy; 2003; 97(1-4):145-50. PubMed ID: 12801667
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multi-MHz micro-electro-mechanical sensors for atomic force microscopy.
    Legrand B; Salvetat JP; Walter B; Faucher M; Théron D; Aimé JP
    Ultramicroscopy; 2017 Apr; 175():46-57. PubMed ID: 28110263
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Atomic force microscope characterization of a resonating nanocantilever.
    Abadal G; Davis ZJ; Borrisé X; Hansen O; Boisen A; Barniol N; Pérez-Murano F; Serra F
    Ultramicroscopy; 2003; 97(1-4):127-33. PubMed ID: 12801665
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Suppression of spurious vibration of cantilever in atomic force microscopy by enhancement of bending rigidity of cantilever chip substrate.
    Tsuji T; Kobari K; Ide S; Yamanaka K
    Rev Sci Instrum; 2007 Oct; 78(10):103703. PubMed ID: 17979424
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy.
    Liu BH; Chang DB
    Ultramicroscopy; 2011 Apr; 111(5):337-41. PubMed ID: 21396528
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Complex dynamics of carbon nanotube probe tips.
    Lee SI; Howell SW; Raman A; Reifenberger R; Nguyen CV; Meyyappan M
    Ultramicroscopy; 2005 May; 103(2):95-102. PubMed ID: 15774270
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications.
    Morawski I; Spiegelberg R; Korte S; Voigtländer B
    Rev Sci Instrum; 2015 Dec; 86(12):123703. PubMed ID: 26724038
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.
    Li X; Logan BE
    Langmuir; 2004 Sep; 20(20):8817-22. PubMed ID: 15379512
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploring electronic transport in molecular junctions by conducting atomic force microscopy.
    Mativetsky JM; Palma M; Samorì P
    Top Curr Chem; 2008; 285():157-202. PubMed ID: 23636678
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.
    Woolley AT
    Methods Mol Biol; 2004; 283():305-19. PubMed ID: 15197321
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dynamics of probes attached to quartz tuning forks for the detection of surface forces.
    Labardi M
    Nanotechnology; 2007 Oct; 18(39):395505. PubMed ID: 21730420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.