BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20590268)

  • 41. Study on laminar viscosity and zero shear viscosity of latex systems.
    Zhao-Rang H; Feng-Qi L; Bai Y; Li-Li C; Xin-Yi T
    J Colloid Interface Sci; 2002 Jul; 251(2):447-51. PubMed ID: 16290753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and application of a micro-capillary rheometer for in-vitro evaluation of parenteral injectability.
    Allahham A; Mainwaring D; Stewart P; Marriott J
    J Pharm Pharmacol; 2004 Jun; 56(6):709-16. PubMed ID: 15231035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.
    Lopez JM; Hirsa AH
    J Colloid Interface Sci; 2000 Sep; 229(2):575-583. PubMed ID: 10985838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The new low shear viscosimeter LS300 for determination of viscosities of Newtonian and non-Newtonian fluids.
    Ruef P; Gehm J; Gehm L; Felbinger C; Pöschl J; Kuss N
    Gen Physiol Biophys; 2014; 33(3):281-4. PubMed ID: 24968408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Capillary viscometer for fully automated measurement of the concentration and shear dependence of the viscosity of macromolecular solutions.
    Grupi A; Minton AP
    Anal Chem; 2012 Dec; 84(24):10732-6. PubMed ID: 23130673
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative evaluation of two newly developed devices for capillary viscometry.
    Holdt B; Lehmann JK; Schuff-Werner P
    Clin Hemorheol Microcirc; 2005; 33(4):379-87. PubMed ID: 16317247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viscosity of a room temperature ionic liquid: predictions from nonequilibrium and equilibrium molecular dynamics simulations.
    Borodin O; Smith GD; Kim H
    J Phys Chem B; 2009 Apr; 113(14):4771-4. PubMed ID: 19275203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Presentation of a clinical hemoviscosimeter].
    Lelièvre JC; Delgallo H; Lacombe C; Bucherer C
    J Mal Vasc; 1993; 18(2):153-6. PubMed ID: 8350018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment.
    Kairn T; Daivis PJ; Ivanov I; Bhattacharya SN
    J Chem Phys; 2005 Nov; 123(19):194905. PubMed ID: 16321111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscoelastic properties of the small intestinal and caecal contents of the chicken.
    Takahashi T; Goto M; Sakata T
    Br J Nutr; 2004 Jun; 91(6):867-72. PubMed ID: 15182390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Study on viscosity property of gastrointestinal mucus].
    Zhou D; Li J; Li N; Yan G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):72-3. PubMed ID: 15022468
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of Inkjet Printable Formulations Based on Polyorganosilazane and Divinylbenzene.
    Qazzazie-Hauser A; Honnef K; Hanemann T
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper.
    Xu P; Cagin T; Goddard WA
    J Chem Phys; 2005 Sep; 123(10):104506. PubMed ID: 16178609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing.
    Xiao X; Li G; Liu T; Gu M
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Viscometer using drag force measurements.
    Noël MH; Semin B; Hulin JP; Auradou H
    Rev Sci Instrum; 2011 Feb; 82(2):023909. PubMed ID: 21361613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.
    Lee TA; Liao WH; Wu YF; Chen YL; Tung YC
    Anal Chem; 2018 Feb; 90(3):2317-2325. PubMed ID: 29293313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
    Kim BJ; Lee SY; Jee S; Atajanov A; Yang S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor.
    Um BH; Hanley TR
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):29-38. PubMed ID: 18425609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.