These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20590289)

  • 1. Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays.
    Murphy DW; Dasi LP; Vukasinovic J; Glezer A; Yoganathan AP
    J Biomech Eng; 2010 Jul; 132(7):071011. PubMed ID: 20590289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive flow control of bileaflet mechanical heart valve leakage flow.
    Dasi LP; Murphy DW; Glezer A; Yoganathan AP
    J Biomech; 2008; 41(6):1166-73. PubMed ID: 18374925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypertension on the closing dynamics and Lagrangian blood damage index measure of the b-datum regurgitant jet in a bileaflet mechanical heart valve.
    Forleo M; Dasi LP
    Ann Biomed Eng; 2014 Jan; 42(1):110-22. PubMed ID: 23975384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the Flow Separation in Heart Valves Using Vortex Generators.
    Wang Z; Dasi LP; Hatoum H
    Ann Biomed Eng; 2022 Aug; 50(8):914-928. PubMed ID: 35415767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry.
    Manning KB; Kini V; Fontaine AA; Deutsch S; Tarbell JM
    Artif Organs; 2003 Sep; 27(9):840-6. PubMed ID: 12940907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow.
    Subramanian A; Mu H; Kadambi JR; Wernet MP; Brendzel AM; Harasaki H
    J Heart Valve Dis; 2000 Sep; 9(5):721-31. PubMed ID: 11041190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves.
    Bluestein D; Rambod E; Gharib M
    J Biomech Eng; 2000 Apr; 122(2):125-34. PubMed ID: 10834152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of steady flow patterns of a new trileaflet mechanical aortic valve.
    Liu JS; Lu PC; Lo CW; Lai HC; Hwang NH
    ASAIO J; 2005; 51(4):336-41. PubMed ID: 16156295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.
    Ellis JT; Healy TM; Fontaine AA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):591-9. PubMed ID: 8953436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of Pressure Gradient and Turbulence Using Vortex Generators in Prosthetic Heart Valves.
    Hatoum H; Dasi LP
    Ann Biomed Eng; 2019 Jan; 47(1):85-96. PubMed ID: 30209706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro pulsatile flow hemodynamics of five mechanical aortic heart valve prostheses.
    Walker PG; Yoganathan AP
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S113-23. PubMed ID: 1389270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of design parameters on bileaflet mechanical heart valve flow dynamics.
    Govindarajan V; Udaykumar HS; Herbertson LH; Deutsch S; Manning KB; Chandran KB
    J Heart Valve Dis; 2009 Sep; 18(5):535-45. PubMed ID: 20099695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vivo turbulent stresses of bileaflet prosthesis leakage jets.
    Travis BR; Christensen TD; Smerup M; Olsen MS; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 2005 Sep; 14(5):644-56. PubMed ID: 16245504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase.
    Yun BM; Wu J; Simon HA; Arjunon S; Sotiropoulos F; Aidun CK; Yoganathan AP
    Ann Biomed Eng; 2012 Jul; 40(7):1468-85. PubMed ID: 22215278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulence characteristics downstream of a new trileaflet mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    ASAIO J; 2011; 57(3):188-96. PubMed ID: 21499078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves.
    Goubergrits L; Kertzscher U; Affeld K; Petz C; Stalling D; Hege HC
    ASAIO J; 2008; 54(1):50-7. PubMed ID: 18204316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow and thrombosis at orifices simulating mechanical heart valve leakage regions.
    Fallon AM; Shah N; Marzec UM; Warnock JN; Yoganathan AP; Hanson SR
    J Biomech Eng; 2006 Feb; 128(1):30-9. PubMed ID: 16532615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vitro localization of initial flow-induced thrombus formation in bileaflet mechanical heart valves.
    Scharfschwerdt M; Thomschke M; Sievers HH
    ASAIO J; 2009; 55(1):19-23. PubMed ID: 19092660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices.
    Arjunon S; Ardana PH; Saikrishnan N; Madhani S; Foster B; Glezer A; Yoganathan AP
    J Biomech Eng; 2015 Apr; 137(4):045001. PubMed ID: 25587891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.