These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20590294)

  • 1. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A posture optimization algorithm for model-based motion capture of movement sequences.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci Methods; 2004 May; 135(1-2):43-54. PubMed ID: 15020088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining rigid body transformation parameters from ill-conditioned spatial marker co-ordinates.
    Carman AB; Milburn PD
    J Biomech; 2006; 39(10):1778-86. PubMed ID: 16098982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model.
    Begon M; Wieber PB; Yeadon MR
    J Biomech; 2008; 41(3):581-6. PubMed ID: 18036597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics.
    Andersen MS; Benoit DL; Damsgaard M; Ramsey DK; Rasmussen J
    J Biomech; 2010 Jan; 43(2):268-73. PubMed ID: 19879581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary optimization for robust hierarchical computation of the rotation centres of kinematic chains from reduced ranges of motion the lower spine case.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2004 Dec; 37(12):1881-90. PubMed ID: 15519596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knee joint secondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints.
    Wang H; Zheng NN
    J Biomech Eng; 2010 Dec; 132(12):124502. PubMed ID: 21142329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving joint torque calculations: optimization-based inverse dynamics to reduce the effect of motion errors.
    Riemer R; Hsiao-Wecksler ET
    J Biomech; 2008; 41(7):1503-9. PubMed ID: 18396292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.
    Kiat Teu K; Kim W
    J Biomech; 2006; 39(15):2857-62. PubMed ID: 16259991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method.
    Park W; Chaffin DB; Martin BJ; Faraway JJ
    J Biomech; 2005 Nov; 38(11):2321-9. PubMed ID: 16154421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SCoRE residual: a quality index to assess the accuracy of joint estimations.
    Ehrig RM; Heller MO; Kratzenstein S; Duda GN; Trepczynski A; Taylor WR
    J Biomech; 2011 Apr; 44(7):1400-4. PubMed ID: 21334628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion analysis of articulated objects from monocular images.
    Zhang X; Liu Y; Huang TS
    IEEE Trans Pattern Anal Mach Intell; 2006 Apr; 28(4):625-36. PubMed ID: 16566510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of formal methods for determining the centre of rotation of ball joints.
    Ehrig RM; Taylor WR; Duda GN; Heller MO
    J Biomech; 2006; 39(15):2798-809. PubMed ID: 16293257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.