These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 2059031)
1. Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate. Kennes C; Veiga MC; Dubourguier HC; Touzel JP; Albagnac G; Naveau H; Nyns EJ Appl Environ Microbiol; 1991 Apr; 57(4):1046-51. PubMed ID: 2059031 [TBL] [Abstract][Full Text] [Related]
2. Cocoa fermentations conducted with a defined microbial cocktail inoculum. Schwan RF Appl Environ Microbiol; 1998 Apr; 64(4):1477-83. PubMed ID: 9546184 [TBL] [Abstract][Full Text] [Related]
3. Citrate utilization by homo- and heterofermentative lactobacilli. Medina de Figueroa R; Alvarez F; Pesce de Ruiz Holgado A; Oliver G; Sesma F Microbiol Res; 2000 Mar; 154(4):313-20. PubMed ID: 10772153 [TBL] [Abstract][Full Text] [Related]
4. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Pereira GV; Miguel MG; Ramos CL; Schwan RF Appl Environ Microbiol; 2012 Aug; 78(15):5395-405. PubMed ID: 22636007 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? Bayrock DP; Ingledew WM J Ind Microbiol Biotechnol; 2004 Sep; 31(8):362-8. PubMed ID: 15257443 [TBL] [Abstract][Full Text] [Related]
6. Fermentation of citrate by Lactobacillus plantarum in the presence of a yeast under acid conditions. Kennes C; Dubourguier HC; Albagnac G; Naveau H; Veiga M; Nyns EJ Appl Microbiol Biotechnol; 1991 Jun; 35(3):369-372. PubMed ID: 22622939 [TBL] [Abstract][Full Text] [Related]
7. Pressure measurement to evaluate ethanol or lactic acid production during glucose fermentation by yeast or heterofermentative bacteria in pure and mixed culture. Wick M; Lebeault JM Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):687-92. PubMed ID: 11601615 [TBL] [Abstract][Full Text] [Related]
8. Content of xylose, trehalose and l-citrulline in cucumber fermentations and utilization of such compounds by certain lactic acid bacteria. Ucar RA; Pérez-Díaz IM; Dean LL Food Microbiol; 2020 Oct; 91():103454. PubMed ID: 32539957 [TBL] [Abstract][Full Text] [Related]
9. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. Narendranath NV; Power R J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666 [TBL] [Abstract][Full Text] [Related]
10. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related]
11. Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Narendranath NV; Hynes SH; Thomas KC; Ingledew WM Appl Environ Microbiol; 1997 Nov; 63(11):4158-63. PubMed ID: 9361399 [TBL] [Abstract][Full Text] [Related]
12. Behavior of Lactobacillus plantarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice. Alwazeer D; Cachon R; Divies C J Food Prot; 2002 Oct; 65(10):1586-9. PubMed ID: 12380743 [TBL] [Abstract][Full Text] [Related]
13. Cactus pear (Opuntia ficus-indica) juice fermented with autochthonous Lactobacillus plantarum S-811. Verón HE; Gauffin Cano P; Fabersani E; Sanz Y; Isla MI; Fernández Espinar MT; Gil Ponce JV; Torres S Food Funct; 2019 Feb; 10(2):1085-1097. PubMed ID: 30720817 [TBL] [Abstract][Full Text] [Related]
14. Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Narendranath NV; Power R Appl Environ Microbiol; 2005 May; 71(5):2239-43. PubMed ID: 15870306 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Lactobacillus plantarum and Saccharomyces cerevisiae in the Presence of Bifenthrin. Đorđević TM; Đurović-Pejčev RD Curr Microbiol; 2016 Jun; 72(6):680-91. PubMed ID: 26868256 [TBL] [Abstract][Full Text] [Related]
16. Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae. Gerardi C; Tristezza M; Giordano L; Rampino P; Perrotta C; Baruzzi F; Capozzi V; Mita G; Grieco F Food Microbiol; 2019 Dec; 84():103262. PubMed ID: 31421756 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Liu J; Wu Q; Wang P; Lin J; Huang L; Xu Y Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28970229 [TBL] [Abstract][Full Text] [Related]
18. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226 [TBL] [Abstract][Full Text] [Related]
19. Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Worley-Morse TO; Deshusses MA; Gunsch CK Biotechnol Bioeng; 2015 Aug; 112(8):1544-53. PubMed ID: 25788328 [TBL] [Abstract][Full Text] [Related]
20. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation. Abe A; Furukawa S; Watanabe S; Morinaga Y Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]