These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 20590639)
1. Openers of small conductance calcium-activated potassium channels selectively enhance NO-mediated bradykinin vasodilatation in porcine retinal arterioles. Dalsgaard T; Kroigaard C; Misfeldt M; Bek T; Simonsen U Br J Pharmacol; 2010 Jul; 160(6):1496-508. PubMed ID: 20590639 [TBL] [Abstract][Full Text] [Related]
2. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles. Dalsgaard T; Kroigaard C; Bek T; Simonsen U Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162 [TBL] [Abstract][Full Text] [Related]
3. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. Stankevicius E; Dalsgaard T; Kroigaard C; Beck L; Boedtkjer E; Misfeldt MW; Nielsen G; Schjorring O; Hughes A; Simonsen U J Pharmacol Exp Ther; 2011 Dec; 339(3):842-50. PubMed ID: 21880870 [TBL] [Abstract][Full Text] [Related]
4. NS309 restores EDHF-type relaxation in mesenteric small arteries from type 2 diabetic ZDF rats. Brøndum E; Kold-Petersen H; Simonsen U; Aalkjaer C Br J Pharmacol; 2010 Jan; 159(1):154-65. PubMed ID: 20015296 [TBL] [Abstract][Full Text] [Related]
5. Calcium-activated potassium channels contribute to human skeletal muscle microvascular endothelial dysfunction related to cardiopulmonary bypass. Liu Y; Sellke EW; Feng J; Clements RT; Sodha NR; Khabbaz KR; Senthilnathan V; Alper SL; Sellke FW Surgery; 2008 Aug; 144(2):239-44. PubMed ID: 18656631 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles: analogy to EDHF-type relaxation in rat pulmonary arteries. Kroigaard C; Dalsgaard T; Simonsen U Am J Physiol Lung Cell Mol Physiol; 2010 Apr; 298(4):L531-42. PubMed ID: 20118301 [TBL] [Abstract][Full Text] [Related]
7. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo. Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):27-34. PubMed ID: 20978884 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients. Liu Y; Xie A; Singh AK; Ehsan A; Choudhary G; Dudley S; Sellke FW; Feng J J Am Heart Assoc; 2015 Aug; 4(8):e002062. PubMed ID: 26304940 [TBL] [Abstract][Full Text] [Related]
9. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Parajuli SP; Hristov KL; Soder RP; Kellett WF; Petkov GV Br J Pharmacol; 2013 Apr; 168(7):1611-25. PubMed ID: 23145946 [TBL] [Abstract][Full Text] [Related]
10. Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arteriolar vasodilation. Sheng JZ; Ella S; Davis MJ; Hill MA; Braun AP FASEB J; 2009 Apr; 23(4):1138-45. PubMed ID: 19074509 [TBL] [Abstract][Full Text] [Related]
11. Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Weston AH; Porter EL; Harno E; Edwards G Br J Pharmacol; 2010 Jun; 160(4):836-43. PubMed ID: 20233221 [TBL] [Abstract][Full Text] [Related]
12. Extracellular l-arginine Enhances Relaxations Induced by Opening of Calcium-Activated SKCa Channels in Porcine Retinal Arteriole. Simonsen U; Winther AK; Oliván-Viguera A; Comerma-Steffensen S; Köhler R; Bek T Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31027156 [TBL] [Abstract][Full Text] [Related]
13. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Hougaard C; Eriksen BL; Jørgensen S; Johansen TH; Dyhring T; Madsen LS; Strøbaek D; Christophersen P Br J Pharmacol; 2007 Jul; 151(5):655-65. PubMed ID: 17486140 [TBL] [Abstract][Full Text] [Related]
14. Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Sheng JZ; Braun AP Am J Physiol Cell Physiol; 2007 Jul; 293(1):C458-67. PubMed ID: 17459950 [TBL] [Abstract][Full Text] [Related]
15. Contribution of IKCa channels to the control of coronary blood flow. Kurian MM; Berwick ZC; Tune JD Exp Biol Med (Maywood); 2011 May; 236(5):621-7. PubMed ID: 21502192 [TBL] [Abstract][Full Text] [Related]
16. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats. Albarwani S; Al-Siyabi S; Al-Husseini I; Al-Ismail A; Al-Lawati I; Al-Bahrani I; Tanira MO Physiol Res; 2015; 64(1):39-49. PubMed ID: 25194131 [TBL] [Abstract][Full Text] [Related]
17. Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase. Gaete PS; Lillo MA; Ardiles NM; Pérez FR; Figueroa XF Free Radic Biol Med; 2012 Mar; 52(5):860-70. PubMed ID: 22210378 [TBL] [Abstract][Full Text] [Related]
18. Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids. Weston AH; Félétou M; Vanhoutte PM; Falck JR; Campbell WB; Edwards G Br J Pharmacol; 2005 Jul; 145(6):775-84. PubMed ID: 15895105 [TBL] [Abstract][Full Text] [Related]
19. Intermediate-conductance calcium-activated potassium channels participate in neurovascular coupling. Longden TA; Dunn KM; Draheim HJ; Nelson MT; Weston AH; Edwards G Br J Pharmacol; 2011 Oct; 164(3):922-33. PubMed ID: 21506954 [TBL] [Abstract][Full Text] [Related]
20. Voltage-dependent Ca2+-channel block by openers of intermediate and small conductance Ca2+-activated K+ channels in urinary bladder smooth muscle cells. Morimura K; Yamamura H; Ohya S; Imaizumi Y J Pharmacol Sci; 2006 Mar; 100(3):237-41. PubMed ID: 16518073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]