These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 20590993)
1. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Zhang S; Li G; Fang J; Chen W; Jiang H; Zou J; Liu X; Zhao X; Li X; Chu C; Xie Q; Jiang X; Zhu L J Integr Plant Biol; 2010 Jul; 52(7):626-38. PubMed ID: 20590993 [TBL] [Abstract][Full Text] [Related]
2. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Arite T; Iwata H; Ohshima K; Maekawa M; Nakajima M; Kojima M; Sakakibara H; Kyozuka J Plant J; 2007 Sep; 51(6):1019-29. PubMed ID: 17655651 [TBL] [Abstract][Full Text] [Related]
3. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Kitomi Y; Ito H; Hobo T; Aya K; Kitano H; Inukai Y Plant J; 2011 Aug; 67(3):472-84. PubMed ID: 21481033 [TBL] [Abstract][Full Text] [Related]
4. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Chen Y; Fan X; Song W; Zhang Y; Xu G Plant Biotechnol J; 2012 Feb; 10(2):139-49. PubMed ID: 21777365 [TBL] [Abstract][Full Text] [Related]
5. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Arite T; Umehara M; Ishikawa S; Hanada A; Maekawa M; Yamaguchi S; Kyozuka J Plant Cell Physiol; 2009 Aug; 50(8):1416-24. PubMed ID: 19542179 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis revealed the interaction among strigolactones, auxin, and cytokinin in controlling the shoot branching of rice. Zha M; Imran M; Wang Y; Xu J; Ding Y; Wang S Plant Cell Rep; 2019 Mar; 38(3):279-293. PubMed ID: 30689021 [TBL] [Abstract][Full Text] [Related]
7. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release. Kitazawa D; Miyazawa Y; Fujii N; Hoshino A; Iida S; Nitasaka E; Takahashi H Plant Cell Physiol; 2008 Jun; 49(6):891-900. PubMed ID: 18420594 [TBL] [Abstract][Full Text] [Related]
8. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Xu J; Zha M; Li Y; Ding Y; Chen L; Ding C; Wang S Plant Cell Rep; 2015 Sep; 34(9):1647-62. PubMed ID: 26024762 [TBL] [Abstract][Full Text] [Related]
9. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Xu M; Zhu L; Shou H; Wu P Plant Cell Physiol; 2005 Oct; 46(10):1674-81. PubMed ID: 16085936 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Profiles Reveal the Crucial Roles of Auxin and Cytokinin in the "Shoot Branching" of Lv X; Zhang M; Li X; Ye R; Wang X Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373177 [No Abstract] [Full Text] [Related]
11. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Ferguson BJ; Beveridge CA Plant Physiol; 2009 Apr; 149(4):1929-44. PubMed ID: 19218361 [TBL] [Abstract][Full Text] [Related]
12. Strigolactones, a novel class of plant hormone controlling shoot branching. Rameau C C R Biol; 2010 Apr; 333(4):344-9. PubMed ID: 20371109 [TBL] [Abstract][Full Text] [Related]
13. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum. Dierck R; De Keyser E; De Riek J; Dhooghe E; Van Huylenbroeck J; Prinsen E; Van Der Straeten D PLoS One; 2016; 11(8):e0161732. PubMed ID: 27557329 [TBL] [Abstract][Full Text] [Related]
14. New genes in the strigolactone-related shoot branching pathway. Beveridge CA; Kyozuka J Curr Opin Plant Biol; 2010 Feb; 13(1):34-9. PubMed ID: 19913454 [TBL] [Abstract][Full Text] [Related]
15. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Domingo C; Andrés F; Tharreau D; Iglesias DJ; Talón M Mol Plant Microbe Interact; 2009 Feb; 22(2):201-10. PubMed ID: 19132872 [TBL] [Abstract][Full Text] [Related]
16. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. Polanská L; Vicánková A; Nováková M; Malbeck J; Dobrev PI; Brzobohaty B; Vanková R; Machácková I J Exp Bot; 2007; 58(3):637-49. PubMed ID: 17175552 [TBL] [Abstract][Full Text] [Related]
17. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Morita Y; Kyozuka J Plant Cell Physiol; 2007 Mar; 48(3):540-9. PubMed ID: 17303594 [TBL] [Abstract][Full Text] [Related]
18. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Nakamura A; Umemura I; Gomi K; Hasegawa Y; Kitano H; Sazuka T; Matsuoka M Plant J; 2006 Apr; 46(2):297-306. PubMed ID: 16623891 [TBL] [Abstract][Full Text] [Related]
19. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Luo A; Qian Q; Yin H; Liu X; Yin C; Lan Y; Tang J; Tang Z; Cao S; Wang X; Xia K; Fu X; Luo D; Chu C Plant Cell Physiol; 2006 Feb; 47(2):181-91. PubMed ID: 16306061 [TBL] [Abstract][Full Text] [Related]
20. Cytokinin Targets Auxin Transport to Promote Shoot Branching. Waldie T; Leyser O Plant Physiol; 2018 Jun; 177(2):803-818. PubMed ID: 29717021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]