These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 20590993)
21. Hormonal control of shoot branching. Ongaro V; Leyser O J Exp Bot; 2008; 59(1):67-74. PubMed ID: 17728300 [TBL] [Abstract][Full Text] [Related]
22. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991 [TBL] [Abstract][Full Text] [Related]
23. Auxin-cytokinin interactions in the control of shoot branching. Shimizu-Sato S; Tanaka M; Mori H Plant Mol Biol; 2009 Mar; 69(4):429-35. PubMed ID: 18974937 [TBL] [Abstract][Full Text] [Related]
24. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Zhang J; Peng Y; Guo Z Cell Res; 2008 Apr; 18(4):508-21. PubMed ID: 18071364 [TBL] [Abstract][Full Text] [Related]
26. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Bi YM; Kant S; Clarke J; Gidda S; Ming F; Xu J; Rochon A; Shelp BJ; Hao L; Zhao R; Mullen RT; Zhu T; Rothstein SJ Plant Cell Environ; 2009 Dec; 32(12):1749-60. PubMed ID: 19682292 [TBL] [Abstract][Full Text] [Related]
27. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Fujita T; Sakaguchi H; Hiwatashi Y; Wagstaff SJ; Ito M; Deguchi H; Sato T; Hasebe M Evol Dev; 2008; 10(2):176-86. PubMed ID: 18315811 [TBL] [Abstract][Full Text] [Related]
28. Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Cheng X; Jiang H; Zhang J; Qian Y; Zhu S; Cheng B Genet Mol Res; 2010 Mar; 9(1):348-59. PubMed ID: 20309821 [TBL] [Abstract][Full Text] [Related]
29. New branching inhibitors and their potential as strigolactone mimics in rice. Fukui K; Ito S; Ueno K; Yamaguchi S; Kyozuka J; Asami T Bioorg Med Chem Lett; 2011 Aug; 21(16):4905-8. PubMed ID: 21741836 [TBL] [Abstract][Full Text] [Related]
30. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Zhao D; Wang Y; Feng C; Wei Y; Peng X; Guo X; Guo X; Zhai Z; Li J; Shen X; Li T Plant J; 2020 Jul; 103(1):166-183. PubMed ID: 32031710 [TBL] [Abstract][Full Text] [Related]
31. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Kobayashi K; Masuda T; Takamiya K; Ohta H Plant J; 2006 Jul; 47(2):238-48. PubMed ID: 16762032 [TBL] [Abstract][Full Text] [Related]
32. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Vadassery J; Ritter C; Venus Y; Camehl I; Varma A; Shahollari B; Novák O; Strnad M; Ludwig-Müller J; Oelmüller R Mol Plant Microbe Interact; 2008 Oct; 21(10):1371-83. PubMed ID: 18785832 [TBL] [Abstract][Full Text] [Related]
33. Control of tiller growth of rice by OsSPL14 and Strigolactones, which work in two independent pathways. Luo L; Li W; Miura K; Ashikari M; Kyozuka J Plant Cell Physiol; 2012 Oct; 53(10):1793-801. PubMed ID: 22960246 [TBL] [Abstract][Full Text] [Related]
34. Apoplastic H2 O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. Chen XJ; Xia XJ; Guo X; Zhou YH; Shi K; Zhou J; Yu JQ New Phytol; 2016 Sep; 211(4):1266-78. PubMed ID: 27240824 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of shoot branching by new terpenoid plant hormones. Umehara M; Hanada A; Yoshida S; Akiyama K; Arite T; Takeda-Kamiya N; Magome H; Kamiya Y; Shirasu K; Yoneyama K; Kyozuka J; Yamaguchi S Nature; 2008 Sep; 455(7210):195-200. PubMed ID: 18690207 [TBL] [Abstract][Full Text] [Related]
36. Identification and characterization of Mini1, a gene regulating rice shoot development. Fang Y; Hu J; Xu J; Yu H; Shi Z; Xiong G; Zhu L; Zeng D; Zhang G; Gao Z; Dong G; Yan M; Guo L; Wang Y; Qian Q J Integr Plant Biol; 2015 Feb; 57(2):151-61. PubMed ID: 24946831 [TBL] [Abstract][Full Text] [Related]
37. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Azizi P; Rafii MY; Maziah M; Abdullah SN; Hanafi MM; Latif MA; Rashid AA; Sahebi M Mech Dev; 2015 Feb; 135():1-15. PubMed ID: 25447356 [TBL] [Abstract][Full Text] [Related]
38. Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants. Vysotskaya LB; Veselov SY; Kudoyarova GR J Exp Bot; 2010 Aug; 61(13):3709-17. PubMed ID: 20643808 [TBL] [Abstract][Full Text] [Related]
39. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Wang L; Wang Z; Xu Y; Joo SH; Kim SK; Xue Z; Xu Z; Wang Z; Chong K Plant J; 2009 Feb; 57(3):498-510. PubMed ID: 18980660 [TBL] [Abstract][Full Text] [Related]
40. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Yang G; Nakamura H; Ichikawa H; Kitano H; Komatsu S Phytochemistry; 2006 Jul; 67(14):1442-54. PubMed ID: 16808934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]