BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20591188)

  • 1. Presence of a classical RRM-fold palm domain in Thg1-type 3'- 5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains.
    Anantharaman V; Iyer LM; Aravind L
    Biol Direct; 2010 Jun; 5():43. PubMed ID: 20591188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal requirements for reverse polymerization and tRNA repair by tRNA
    Desai R; Kim K; Büchsenschütz HC; Chen AW; Bi Y; Mann MR; Turk MA; Chung CZ; Heinemann IU
    RNA Biol; 2018; 15(4-5):614-622. PubMed ID: 28901837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the
    Patel KJ; Yourik P; Jackman JE
    RNA; 2021 Jun; 27(6):683-693. PubMed ID: 33790044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-dependent 3'-5' nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life.
    Abad MG; Rao BS; Jackman JE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):674-9. PubMed ID: 20080734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNAHis guanylyltransferase catalyzes a 3'-5' polymerization reaction that is distinct from G-1 addition.
    Jackman JE; Phizicky EM
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8640-5. PubMed ID: 16731615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily.
    Jackman JE; Gott JM; Gray MW
    RNA; 2012 May; 18(5):886-99. PubMed ID: 22456265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNAHis-guanylyltransferase establishes tRNAHis identity.
    Heinemann IU; Nakamura A; O'Donoghue P; Eiler D; Söll D
    Nucleic Acids Res; 2012 Jan; 40(1):333-44. PubMed ID: 21890903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein.
    Kimura S; Suzuki T; Chen M; Kato K; Yu J; Nakamura A; Tanaka I; Yao M
    Sci Adv; 2016 Mar; 2(3):e1501397. PubMed ID: 27051866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of 3'-5' nucleotide addition catalyzed by eukaryotic tRNA(His) guanylyltransferase.
    Smith BA; Jackman JE
    Biochemistry; 2012 Jan; 51(1):453-65. PubMed ID: 22136300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.).
    Smith BA; Jackman JE
    Biochemistry; 2014 Mar; 53(8):1380-91. PubMed ID: 24548272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of critical residues for G-1 addition and substrate recognition by tRNA(His) guanylyltransferase.
    Jackman JE; Phizicky EM
    Biochemistry; 2008 Apr; 47(16):4817-25. PubMed ID: 18366186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing.
    Abad MG; Long Y; Willcox A; Gott JM; Gray MW; Jackman JE
    RNA; 2011 Apr; 17(4):613-23. PubMed ID: 21307182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of a bacterial tRNA(HIS) guanylyltransferase (Thg1)-like protein, with nucleotide in the activation and nucleotidyl transfer sites.
    Hyde SJ; Rao BS; Eckenroth BE; Jackman JE; Doublié S
    PLoS One; 2013; 8(7):e67465. PubMed ID: 23844012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases.
    Hyde SJ; Eckenroth BE; Smith BA; Eberley WA; Heintz NH; Jackman JE; Doublié S
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20305-10. PubMed ID: 21059936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases.
    Jackman JE; Phizicky EM
    RNA; 2006 Jun; 12(6):1007-14. PubMed ID: 16625026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase.
    Preston MA; Phizicky EM
    RNA; 2010 May; 16(5):1068-77. PubMed ID: 20360392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of distinct biological functions for four 3'-5' RNA polymerases.
    Long Y; Abad MG; Olson ED; Carrillo EY; Jackman JE
    Nucleic Acids Res; 2016 Sep; 44(17):8395-406. PubMed ID: 27484477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage.
    Gorbalenya AE; Pringle FM; Zeddam JL; Luke BT; Cameron CE; Kalmakoff J; Hanzlik TN; Gordon KH; Ward VK
    J Mol Biol; 2002 Nov; 324(1):47-62. PubMed ID: 12421558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair.
    Chen AW; Jayasinghe MI; Chung CZ; Rao BS; Kenana R; Heinemann IU; Jackman JE
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30917604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.