BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20591429)

  • 21. Ubiquitination of p53 at multiple sites in the DNA-binding domain.
    Chan WM; Mak MC; Fung TK; Lau A; Siu WY; Poon RY
    Mol Cancer Res; 2006 Jan; 4(1):15-25. PubMed ID: 16446403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study.
    Lee HJ; Srinivasan D; Coomber D; Lane DP; Verma CS
    Cell Cycle; 2007 Nov; 6(21):2604-11. PubMed ID: 17957142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S100A6 inhibits MDM2 to suppress breast cancer growth and enhance sensitivity to chemotherapy.
    Qi M; Yi X; Yue B; Huang M; Zhou S; Xiong J
    Breast Cancer Res; 2023 May; 25(1):55. PubMed ID: 37217945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation.
    Kulikov R; Winter M; Blattner C
    J Biol Chem; 2006 Sep; 281(39):28575-83. PubMed ID: 16870621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The C-terminal SAM domain of p73 binds to the N terminus of MDM2.
    Neira JL; Díaz-García C; Prieto M; Coutinho A
    Biochim Biophys Acta Gen Subj; 2019 Apr; 1863(4):760-770. PubMed ID: 30735716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor.
    Fernandez-Fernandez MR; Veprintsev DB; Fersht AR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4735-40. PubMed ID: 15781852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription factor TAFII250 phosphorylates the acidic domain of Mdm2 through recruitment of protein kinase CK2.
    Allende-Vega N; McKenzie L; Meek D
    Mol Cell Biochem; 2008 Sep; 316(1-2):99-106. PubMed ID: 18548200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins.
    Lee MS; Ha JH; Yoon HS; Lee CK; Chi SW
    Biochem Biophys Res Commun; 2014 Feb; 445(1):120-5. PubMed ID: 24491548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding.
    Dastidar SG; Lane DP; Verma CS
    Cell Cycle; 2012 Jun; 11(12):2239-47. PubMed ID: 22617389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the spatial architecture of p53, MDM2, and p14ARF containing complexes.
    Savchenko A; Yurchenko M; Snopok B; Kashuba E
    Mol Biotechnol; 2009 Mar; 41(3):270-7. PubMed ID: 18989794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding induced folding in p53-MDM2 complex.
    Chen HF; Luo R
    J Am Chem Soc; 2007 Mar; 129(10):2930-7. PubMed ID: 17302414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction.
    Zhao J; Blayney A; Liu X; Gandy L; Jin W; Yan L; Ha JH; Canning AJ; Connelly M; Yang C; Liu X; Xiao Y; Cosgrove MS; Solmaz SR; Zhang Y; Ban D; Chen J; Loh SN; Wang C
    Nat Commun; 2021 Feb; 12(1):986. PubMed ID: 33579943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B.
    Wafer LN; Streicher WW; McCallum SA; Makhatadze GI
    Biochemistry; 2012 Sep; 51(36):7189-201. PubMed ID: 22913742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying long-range structure in the intrinsically unstructured transactivation domain of p53.
    Vise P; Baral B; Stancik A; Lowry DF; Daughdrill GW
    Proteins; 2007 May; 67(3):526-30. PubMed ID: 17335006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations.
    Espinoza-Fonseca LM; Trujillo-Ferrara JG
    Biopolymers; 2006 Nov; 83(4):365-73. PubMed ID: 16817233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.
    Pazgier M; Liu M; Zou G; Yuan W; Li C; Li C; Li J; Monbo J; Zella D; Tarasov SG; Lu W
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4665-70. PubMed ID: 19255450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.
    Orre LM; Panizza E; Kaminskyy VO; Vernet E; Gräslund T; Zhivotovsky B; Lehtiö J
    Oncogene; 2013 Dec; 32(49):5531-40. PubMed ID: 23752197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73.
    Zdzalik M; Pustelny K; Kedracka-Krok S; Huben K; Pecak A; Wladyka B; Jankowski S; Dubin A; Potempa J; Dubin G
    Cell Cycle; 2010 Nov; 9(22):4584-91. PubMed ID: 21088494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular recognition of p53 and MDM2 by USP7/HAUSP.
    Sheng Y; Saridakis V; Sarkari F; Duan S; Wu T; Arrowsmith CH; Frappier L
    Nat Struct Mol Biol; 2006 Mar; 13(3):285-91. PubMed ID: 16474402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2.
    Saha A; Murakami M; Kumar P; Bajaj B; Sims K; Robertson ES
    J Virol; 2009 May; 83(9):4652-69. PubMed ID: 19244339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.