BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20591901)

  • 1. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
    Mathieu V; Fastrez J; Soumillion P
    Protein Eng Des Sel; 2010 Sep; 23(9):699-709. PubMed ID: 20591901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase.
    Volkov AN; Barrios H; Mathonet P; Evrard C; Ubbink M; Declercq JP; Soumillion P; Fastrez J
    Chembiochem; 2011 Apr; 12(6):904-13. PubMed ID: 21425229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circularly permuted beta-lactamase from Staphylococcus aureus PC1.
    Pieper U; Hayakawa K; Li Z; Herzberg O
    Biochemistry; 1997 Jul; 36(29):8767-74. PubMed ID: 9220963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch.
    Kim JR; Ostermeier M
    Arch Biochem Biophys; 2006 Feb; 446(1):44-51. PubMed ID: 16384549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tying up the loose ends: circular permutation decreases the proteolytic susceptibility of recombinant proteins.
    Whitehead TA; Bergeron LM; Clark DS
    Protein Eng Des Sel; 2009 Oct; 22(10):607-13. PubMed ID: 19622546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins.
    Meroueh SO; Minasov G; Lee W; Shoichet BK; Mobashery S
    J Am Chem Soc; 2003 Aug; 125(32):9612-8. PubMed ID: 12904027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of faster associating and tighter binding protein complexes.
    Selzer T; Albeck S; Schreiber G
    Nat Struct Biol; 2000 Jul; 7(7):537-41. PubMed ID: 10876236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis.
    Crowder MW; Wang Z; Franklin SL; Zovinka EP; Benkovic SJ
    Biochemistry; 1996 Sep; 35(37):12126-32. PubMed ID: 8810919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops.
    Mathonet P; Deherve J; Soumillion P; Fastrez J
    Protein Sci; 2006 Oct; 15(10):2323-34. PubMed ID: 16963643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of beta-lactamases and penicillin binding mutants from a library of phage displayed TEM-1 beta-lactamase randomly mutated in the active site omega-loop.
    Vanwetswinkel S; Avalle B; Fastrez J
    J Mol Biol; 2000 Jan; 295(3):527-40. PubMed ID: 10623544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria.
    Crawford PA; Yang KW; Sharma N; Bennett B; Crowder MW
    Biochemistry; 2005 Apr; 44(13):5168-76. PubMed ID: 15794654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily.
    Pettigrew DW; Smith GB; Thomas KP; Dodds DC
    Arch Biochem Biophys; 1998 Jan; 349(2):236-45. PubMed ID: 9448710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication between the active site and the allosteric site in class A beta-lactamases.
    Meneksedag D; Dogan A; Kanlikilicer P; Ozkirimli E
    Comput Biol Chem; 2013 Apr; 43():1-10. PubMed ID: 23314151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid sequence determinants of beta-lactamase structure and activity.
    Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T
    J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability.
    Chen Y; Delmas J; Sirot J; Shoichet B; Bonnet R
    J Mol Biol; 2005 Apr; 348(2):349-62. PubMed ID: 15811373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of allosteric beta-lactamase mutants featuring an activity regulation by transition metal ions.
    Mathonet P; Barrios H; Soumillion P; Fastrez J
    Protein Sci; 2006 Oct; 15(10):2335-43. PubMed ID: 16963642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.