BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20591926)

  • 1. Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.
    Karjalainen T; Göransson H; Viinikainen A; Jämsä T; Ryhänen J
    J Hand Surg Eur Vol; 2010 Jul; 35(6):469-74. PubMed ID: 20591926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-titanium wire in circumferential suture of a flexor tendon repair: a comparison to polypropylene.
    Karjalainen T; He M; Chong AK; Lim AY; Ryhanen J
    J Hand Surg Am; 2010 Jul; 35(7):1160-4. PubMed ID: 20610061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair.
    Lawrence TM; Davis TR
    J Hand Surg Am; 2005 Jul; 30(4):836-41. PubMed ID: 16039381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative analysis of the biomechanical behaviour of five flexor tendon core sutures.
    Viinikainen A; Göransson H; Huovinen K; Kellomäki M; Rokkanen P
    J Hand Surg Br; 2004 Dec; 29(6):536-43. PubMed ID: 15542212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of zone II flexor digitorum profundus lacerations using varying suture sizes: a comparative biomechanical study.
    Alavanja G; Dailey E; Mass DP
    J Hand Surg Am; 2005 May; 30(3):448-54. PubMed ID: 15925150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical comparison of 3 loop suture materials in a 6-strand flexor tendon repair technique.
    Gan AW; Neo PY; He M; Yam AK; Chong AK; Tay SC
    J Hand Surg Am; 2012 Sep; 37(9):1830-4. PubMed ID: 22857910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of core suture geometry on tendon deformation and gap formation in porcine flexor tendons.
    Walbeehm ET; De Wit T; Hovius SE; McGrouther DA
    J Hand Surg Eur Vol; 2009 Apr; 34(2):190-5. PubMed ID: 19282412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of modified Kessler tendon suture at different levels in the human flexor digitorum profundus tendon and porcine flexors and porcine extensors: an experimental biomechanical study.
    Havulinna J; Leppänen OV; Järvinen TL; Göransson H
    J Hand Surg Eur Vol; 2011 Oct; 36(8):670-6. PubMed ID: 21816887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative biomechanic study of flexor tendon repair using FiberWire.
    Waitayawinyu T; Martineau PA; Luria S; Hanel DP; Trumble TE
    J Hand Surg Am; 2008; 33(5):701-8. PubMed ID: 18590853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparisons of four-strand tendon repairs with double-stranded sutures: effects of different locks and suture geometry.
    Wu YF; Cao Y; Zhou YL; Tang JB
    J Hand Surg Eur Vol; 2011 Jan; 36(1):34-9. PubMed ID: 20682582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strength of the 6-strand modified Kessler repair performed with triple-stranded or triple-stranded bound suture in a porcine extensor tendon model: an ex vivo study.
    Viinikainen A; Göransson H; Huovinen K; Kellomäki M; Törmälä P; Rokkanen P
    J Hand Surg Am; 2007 Apr; 32(4):510-7. PubMed ID: 17398362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zone I flexor digitorum profundus repair: an ex vivo biomechanical analysis of tendon to bone repair in cadavera.
    Dovan TT; Gelberman RH; Kusano N; Calcaterra M; Silva MJ
    J Hand Surg Am; 2005 Mar; 30(2):258-66. PubMed ID: 15781347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a new 4-strand flexor tendon repair in a cadaveric porcine model.
    Manchio JV; Shashikant MP; Shrivastava A; Weinzweig J; Vernadakis AJ
    J Hand Surg Am; 2009 Jan; 34(1):102-7. PubMed ID: 19058923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of locking stitch size in a four-strand cross-locked cruciate flexor tendon repair.
    Peltz TS; Haddad R; Scougall PJ; Nicklin S; Gianoutsos MP; Walsh WR
    J Hand Surg Am; 2011 Mar; 36(3):450-5. PubMed ID: 21333462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical analysis of a tendon fixation device for flexor tendon repair.
    Su BW; Protopsaltis TS; Koff MF; Chang KP; Strauch RJ; Crow SA; Rosenwasser MP
    J Hand Surg Am; 2005 Mar; 30(2):237-45. PubMed ID: 15781345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of core suture purchase length on strength of four-strand tendon repairs.
    Cao Y; Zhu B; Xie RG; Tang JB
    J Hand Surg Am; 2006 Jan; 31(1):107-12. PubMed ID: 16443114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical assessment of a new type of flexor tendon repair.
    Smith AM; Evans DM
    J Hand Surg Br; 2001 Jun; 26(3):217-9. PubMed ID: 11386770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gliding resistance and strength of composite sutures in human flexor digitorum profundus tendon repair: an in vitro biomechanical study.
    Silva JM; Zhao C; An KN; Zobitz ME; Amadio PC
    J Hand Surg Am; 2009 Jan; 34(1):87-92. PubMed ID: 19121735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of partial versus complete circumferential repair on flexor tendon strength in cadavers.
    Ansari U; Lawson RD; Peterson JL; Appleyard RC; Tonkin MA
    J Hand Surg Am; 2009 Dec; 34(10):1771-6. PubMed ID: 19969187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic testing of pullout sutures and micro-mitek suture anchors in flexor digitorum profundus tendon distal fixation.
    Latendresse K; Dona E; Scougall PJ; Schreuder FB; Puchert E; Walsh WR
    J Hand Surg Am; 2005 May; 30(3):471-8. PubMed ID: 15925154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.