BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 20591991)

  • 1. Higher-order genome organization in human disease.
    Misteli T
    Cold Spring Harb Perspect Biol; 2010 Aug; 2(8):a000794. PubMed ID: 20591991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.
    Merkenschlager M; Nora EP
    Annu Rev Genomics Hum Genet; 2016 Aug; 17():17-43. PubMed ID: 27089971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease.
    Sikder S; Kaypee S; Kundu TK
    J Biosci; 2020; 45():. PubMed ID: 31965993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the 3D cancer genome blueprint.
    Achinger-Kawecka J; Clark SJ
    Epigenomics; 2017 Jan; 9(1):47-55. PubMed ID: 27936932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis.
    Recillas-Targa F; De La Rosa-Velázquez IA; Soto-Reyes E; Benítez-Bribiesca L
    J Cell Mol Med; 2006; 10(3):554-68. PubMed ID: 16989720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome organization: Compartmentalizing chromatin without cohesin.
    Wrighton KH
    Nat Rev Genet; 2017 Nov; 18(11):640-641. PubMed ID: 28989172
    [No Abstract]   [Full Text] [Related]  

  • 8. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression.
    Kang JY; Song SH; Yun J; Jeon MS; Kim HP; Han SW; Kim TY
    Oncogene; 2015 Nov; 34(45):5677-84. PubMed ID: 25703332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-genome doubling drives oncogenic loss of chromatin segregation.
    Lambuta RA; Nanni L; Liu Y; Diaz-Miyar J; Iyer A; Tavernari D; Katanayeva N; Ciriello G; Oricchio E
    Nature; 2023 Mar; 615(7954):925-933. PubMed ID: 36922594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains.
    Lhoumaud P; Badri S; Rodriguez-Hernaez J; Sakellaropoulos T; Sethia G; Kloetgen A; Cornwell M; Bhattacharyya S; Ay F; Bonneau R; Tsirigos A; Skok JA
    Nat Commun; 2019 Oct; 10(1):4843. PubMed ID: 31649247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture?
    Björkegren C; Baranello L
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29547555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the structural features of chromodomain proteins in the human genome and predictive impacts of their mutations in cancers.
    Dahiya R; Naqvi AAT; Mohammad T; Alajmi MF; Rehman MT; Hussain A; Hassan MI
    Int J Biol Macromol; 2019 Jun; 131():1101-1116. PubMed ID: 30917913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenic chromosomal translocations and human cancer (review).
    Zheng J
    Oncol Rep; 2013 Nov; 30(5):2011-9. PubMed ID: 23970180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-Myc, Genomic Instability and Disease.
    Kuttler F; Mai S
    Genome Dyn; 2006; 1():171-190. PubMed ID: 18724060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Organization: Cohesin on the Move.
    Richterova J; Huraiova B; Gregan J
    Mol Cell; 2017 May; 66(4):444-445. PubMed ID: 28525739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of disease.
    Jackson M; Marks L; May GHW; Wilson JB
    Essays Biochem; 2018 Dec; 62(5):643-723. PubMed ID: 30509934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.