BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20592800)

  • 1. Iron and its complexation by phenolic cellular metabolites: from oxidative stress to chemical weapons.
    Chobot V; Hadacek F
    Plant Signal Behav; 2010 Jan; 5(1):4-8. PubMed ID: 20592800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
    Perron NR; Brumaghim JL
    Cell Biochem Biophys; 2009; 53(2):75-100. PubMed ID: 19184542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.
    Sakihama Y; Cohen MF; Grace SC; Yamasaki H
    Toxicology; 2002 Aug; 177(1):67-80. PubMed ID: 12126796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milieu-dependent pro- and antioxidant activity of juglone may explain linear and nonlinear effects on seedling development.
    Chobot V; Hadacek F
    J Chem Ecol; 2009 Mar; 35(3):383-90. PubMed ID: 19263168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant polyphenol antioxidants and oxidative stress.
    Urquiaga I; Leighton F
    Biol Res; 2000; 33(2):55-64. PubMed ID: 15693271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of selected dietary secondary metabolites on reactive oxygen species production caused by iron(II) autoxidation.
    Chobot V; Hadacek F; Kubicova L
    Molecules; 2014 Dec; 19(12):20023-33. PubMed ID: 25470272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol.
    Nowicka B; Walczak J; Kapsiak M; Barnaś K; Dziuba J; Suchoń A
    Plant Physiol Biochem; 2023 Apr; 197():107660. PubMed ID: 36996637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How relevant are flavonoids as antioxidants in plants?
    Hernández I; Alegre L; Van Breusegem F; Munné-Bosch S
    Trends Plant Sci; 2009 Mar; 14(3):125-32. PubMed ID: 19230744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (+/-)-catechin: chemical weapon, antioxidant, or stress regulator?
    Chobot V; Huber C; Trettenhahn G; Hadacek F
    J Chem Ecol; 2009 Aug; 35(8):980-96. PubMed ID: 19701725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of oxidative stress and activities of antioxidant enzymes depicts the negative systemic effect of iron-containing fertilizers and plant phenolic compounds in the desert locust.
    Renault D; Dorrah MA; Mohamed AA; Abdelfattah EA; Bassal TT
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21989-22000. PubMed ID: 27539469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple iron reduction by methoxylated phenolic lignin structures and the generation of reactive oxygen species by lignocellulose surfaces.
    Tamaru Y; Yoshida M; Eltis LD; Goodell B
    Int J Biol Macromol; 2019 May; 128():340-346. PubMed ID: 30699335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic Compound Diversity Explored in the Context of Photo-Oxidative Stress Protection.
    Csepregi K; Hideg É
    Phytochem Anal; 2018 Mar; 29(2):129-136. PubMed ID: 28895264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?
    Halliwell B
    Arch Biochem Biophys; 2008 Aug; 476(2):107-12. PubMed ID: 18284912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidants, oxidative damage and oxygen deprivation stress: a review.
    Blokhina O; Virolainen E; Fagerstedt KV
    Ann Bot; 2003 Jan; 91 Spec No(2):179-94. PubMed ID: 12509339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin.
    Chobot V; Hadacek F; Bachmann G; Weckwerth W; Kubicova L
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation and antioxidants as biomarkers of tissue damage.
    Gutteridge JM
    Clin Chem; 1995 Dec; 41(12 Pt 2):1819-28. PubMed ID: 7497639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical processes in green tea polyphenols (GTP) investigated by electron paramagnetic resonance (EPR) spectroscopy.
    Pirker KF; Severino JF; Reichenauer TG; Goodman BA
    Biotechnol Annu Rev; 2008; 14():349-401. PubMed ID: 18606370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.