These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20592958)

  • 1. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters.
    Mehta SK; Kumar S; Chaudhary S; Bhasin KK; Gradzielski M
    Nanoscale Res Lett; 2009 Jan; 4(1):17-28. PubMed ID: 20592958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles.
    Mehta SK; Kumar S; Chaudhary S; Bhasin KK
    Nanoscale Res Lett; 2009 Jul; 4(10):1197-1208. PubMed ID: 20596462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bright, stable, and water-soluble CuInS2/ZnS nanocrystals passivated by cetyltrimethylammonium bromide.
    Lee J; Han CS
    Nanoscale Res Lett; 2015; 10():145. PubMed ID: 25852434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide.
    Praus P; Dvorský R; Horínková P; Pospíšil M; Kovář P
    J Colloid Interface Sci; 2012 Jul; 377(1):58-63. PubMed ID: 22520213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of ZnS Nanoparticles in Micellar Dispersion of Cetyltrimethylammonium Bromide.
    Praus P; Dvorský R; Petr K; Trojková J
    Acta Chim Slov; 2012 Dec; 59(4):784-8. PubMed ID: 24061359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Assembly Structure Variation of Cetyltrimethylammonium Bromide on the Surface of Gold Nanoparticles.
    Li R; Wang Z; Gu X; Chen C; Zhang Y; Hu D
    ACS Omega; 2020 Mar; 5(10):4943-4952. PubMed ID: 32201780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.
    Liu XH; Luo XH; Lu SX; Zhang JC; Cao WL
    J Colloid Interface Sci; 2007 Mar; 307(1):94-100. PubMed ID: 17188288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-assisted synthesis and characterization of stable silver bromide nanoparticles in aqueous media.
    Chakraborty M; Hsiao FW; Naskar B; Chang CH; Panda AK
    Langmuir; 2012 May; 28(18):7282-90. PubMed ID: 22512457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and spectroscopic investigation of ZnS nanoparticles grown in quaternary reverse micelles.
    Manyar HG; Iliade P; Bertinetti L; Coluccia S; Berlier G
    J Colloid Interface Sci; 2011 Feb; 354(2):511-6. PubMed ID: 21145558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions.
    Mehta SK; Chaudhary S; Kumar S; Bhasin KK; Torigoe K; Sakai H; Abe M
    Nanotechnology; 2008 Jul; 19(29):295601. PubMed ID: 21730604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of amphiphiles Part X: Studies on the interaction between polyoxyethylated (30) octylphenol and cetyltrimethylammonium bromide in aqueous solution.
    Misra PK; Mishra HP; Dash U; Mandal AB
    J Colloid Interface Sci; 2009 May; 333(2):590-8. PubMed ID: 19261290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and optical properties of polymer-based ZnS nanocomposites.
    Tiwari A; Khan SA; Kher RS; Dhoble SJ; Chandel ALS
    Luminescence; 2016 Mar; 31(2):428-432. PubMed ID: 26334003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-phase synthesis of surface modified gold nanoparticles and generation of SERS substrate by seed growth method.
    Baruah B; Craighead C; Abolarin C
    Langmuir; 2012 Oct; 28(43):15168-76. PubMed ID: 23025402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial properties of cetyltrimethylammonium-coated SiO(2) nanoparticles in aqueous media as studied by using different indicator dyes.
    Bryleva EY; Vodolazkaya NA; McHedlov-Petrossyan NO; Samokhina LV; Matveevskaya NA; Tolmachev AV
    J Colloid Interface Sci; 2007 Dec; 316(2):712-22. PubMed ID: 17692863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions.
    Wu SH; Chen DH
    J Colloid Interface Sci; 2004 May; 273(1):165-9. PubMed ID: 15051447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses of the Water-Dispersible Glycolic Acid Capped ZnS:Mn Nanocrystals at Different pH Conditions, and Their Aggregation and Luminescence Quenching Effects in Aqueous Solution.
    Sim YJ; Hwang CS
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6281-8. PubMed ID: 27427703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis and Characterization of Uniform PbS Nanorods.
    Li Y; Li Q; Wu H
    J Nanosci Nanotechnol; 2018 Jan; 18(1):725-729. PubMed ID: 29768901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-responsivity hybrid α-Ag
    Ismail RA; Rawdhan HA; Ahmed DS
    Beilstein J Nanotechnol; 2020; 11():1596-1607. PubMed ID: 33134004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysical and photodynamic properties of Pyronin Y in micellar media at different temperatures.
    Beşer BM; Arik M; Onganer Y
    Luminescence; 2019 Jun; 34(4):415-425. PubMed ID: 30868727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.