BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20593294)

  • 1. Uptake and conversion of D-amino acids in Arabidopsis thaliana.
    Gördes D; Kolukisaoglu Ü; Thurow K
    Amino Acids; 2011 Feb; 40(2):553-63. PubMed ID: 20593294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d-Amino Acids Are Exuded by Arabidopsis thaliana Roots to the Rhizosphere.
    Hener C; Hummel S; Suarez J; Stahl M; Kolukisaoglu Ü
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic determination of L- and D-amino acids in plants.
    Brückner H; Westhauser T
    Amino Acids; 2003; 24(1-2):43-55. PubMed ID: 12624734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAP1 transports uncharged amino acids into roots of Arabidopsis.
    Lee YH; Foster J; Chen J; Voll LM; Weber AP; Tegeder M
    Plant J; 2007 Apr; 50(2):305-19. PubMed ID: 17419840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses of Arabidopsis ecotypes reveal metabolic diversity to convert D-amino acids.
    Gördes D; Koch G; Thurow K; Kolukisaoglu U
    Springerplus; 2013; 2():559. PubMed ID: 24255853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll.
    Hirner A; Ladwig F; Stransky H; Okumoto S; Keinath M; Harms A; Frommer WB; Koch W
    Plant Cell; 2006 Aug; 18(8):1931-46. PubMed ID: 16816136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids.
    Svennerstam H; Ganeteg U; Bellini C; Näsholm T
    Plant Physiol; 2007 Apr; 143(4):1853-60. PubMed ID: 17293438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination and stereochemistry of proteinogenic and non-proteinogenic amino acids in Saudi Arabian date fruits.
    Ali HS; Alhaj OA; Al-Khalifa AS; Brückner H
    Amino Acids; 2014 Sep; 46(9):2241-57. PubMed ID: 24938763
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Kolukisaoglu Ü
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Marfey's reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems.
    Bhushan R; Brückner H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3148-61. PubMed ID: 21737363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.
    Less H; Angelovici R; Tzin V; Galili G
    Amino Acids; 2010 Oct; 39(4):1023-8. PubMed ID: 20364431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of derivatization and chromatographic methods for GC-MS analysis of amino acid enantiomers in physiological samples.
    Waldhier MC; Dettmer K; Gruber MA; Oefner PJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(15-16):1103-12. PubMed ID: 20371216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.
    Tzin V; Malitsky S; Aharoni A; Galili G
    Plant J; 2009 Oct; 60(1):156-67. PubMed ID: 19508381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacities and constraints of amino acid utilization in Arabidopsis.
    Forsum O; Svennerstam H; Ganeteg U; Näsholm T
    New Phytol; 2008; 179(4):1058-1069. PubMed ID: 18627491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methoxyquinoline labeling--a new strategy for the enantioseparation of all chiral proteinogenic amino acids in 1-dimensional liquid chromatography using fluorescence and tandem mass spectrometric detection.
    Reischl RJ; Lindner W
    J Chromatogr A; 2012 Dec; 1269():262-9. PubMed ID: 22921505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometric detection and formation of D-amino acids in processed plant saps, syrups, and fruit juice concentrates.
    Pätzold R; Brückner H
    J Agric Food Chem; 2005 Dec; 53(25):9722-9. PubMed ID: 16332121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative metabolomics charts the impact of genotype-dependent methionine accumulation in Arabidopsis thaliana.
    Kusano M; Fukushima A; Redestig H; Kobayashi M; Otsuki H; Onouchi H; Naito S; Hirai MY; Saito K
    Amino Acids; 2010 Oct; 39(4):1013-21. PubMed ID: 20354740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assay of trace D-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry.
    Song Y; Feng Y; LeBlanc MH; Zhao S; Liu YM
    Anal Chem; 2006 Dec; 78(23):8121-8. PubMed ID: 17134148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of 17 DL-amino acids and chiral sequential analysis of peptides by reversed-phase liquid chromatography after labeling with R(-)-4- (3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole.
    Toyo'oka T; Tomoi N; Oe T; Miyahara T
    Anal Biochem; 1999 Dec; 276(1):48-58. PubMed ID: 10585743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.