These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 20593379)
1. From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Neubeck S; Ponomarenko LA; Freitag F; Giesbers AJ; Zeitler U; Morozov SV; Blake P; Geim AK; Novoselov KS Small; 2010 Jul; 6(14):1469-73. PubMed ID: 20593379 [No Abstract] [Full Text] [Related]
2. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Lu Q; Hu S; Pang D; He Z Chem Commun (Camb); 2005 May; (20):2584-5. PubMed ID: 15900334 [TBL] [Abstract][Full Text] [Related]
3. Layered graphene/quantum dots for photovoltaic devices. Guo CX; Yang HB; Sheng ZM; Lu ZS; Song QL; Li CM Angew Chem Int Ed Engl; 2010 Apr; 49(17):3014-7. PubMed ID: 20349480 [No Abstract] [Full Text] [Related]
4. Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon. Rykaczewski K; Hildreth OJ; Kulkarni D; Henry MR; Kim SK; Wong CP; Tsukruk VV; Fedorov AG ACS Appl Mater Interfaces; 2010 Apr; 2(4):969-73. PubMed ID: 20356053 [TBL] [Abstract][Full Text] [Related]
5. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Das A; Pisana S; Chakraborty B; Piscanec S; Saha SK; Waghmare UV; Novoselov KS; Krishnamurthy HR; Geim AK; Ferrari AC; Sood AK Nat Nanotechnol; 2008 Apr; 3(4):210-5. PubMed ID: 18654505 [TBL] [Abstract][Full Text] [Related]
6. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots. Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497 [TBL] [Abstract][Full Text] [Related]
7. Layered graphene/quantum dots: nanoassemblies for highly efficient solar cells. Dai L ChemSusChem; 2010 Jul; 3(7):797-9. PubMed ID: 20512800 [No Abstract] [Full Text] [Related]
8. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. Kang Z; Tsang CH; Zhang Z; Zhang M; Wong NB; Zapien JA; Shan Y; Lee ST J Am Chem Soc; 2007 May; 129(17):5326-7. PubMed ID: 17407292 [No Abstract] [Full Text] [Related]
10. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Liu Q; Lu X; Li J; Yao X; Li J Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515 [TBL] [Abstract][Full Text] [Related]
12. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Pellissier M; Zigah D; Barrière F; Hapiot P Langmuir; 2008 Aug; 24(16):9089-95. PubMed ID: 18624418 [TBL] [Abstract][Full Text] [Related]
13. Semiconductor quantum dots for bioanalysis. Gill R; Zayats M; Willner I Angew Chem Int Ed Engl; 2008; 47(40):7602-25. PubMed ID: 18810756 [TBL] [Abstract][Full Text] [Related]
14. Hybridization of electron and hole states in semiconductor quantum-dot molecules. Zhu Q; Karlsson KF; Byszewski M; Rudra A; Pelucchi E; He Z; Kapon E Small; 2009 Mar; 5(3):329-35. PubMed ID: 19156720 [No Abstract] [Full Text] [Related]
15. Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Banhart F; Li J; Terrones M Small; 2005 Oct; 1(10):953-6. PubMed ID: 17193375 [No Abstract] [Full Text] [Related]
16. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Vanmaekelbergh D; Liljeroth P Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Dong H; Gao W; Yan F; Ji H; Ju H Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633 [TBL] [Abstract][Full Text] [Related]
18. Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response. Yan Y; Zheng W; Zhang M; Wang L; Su L; Mao L Langmuir; 2005 Jul; 21(14):6560-6. PubMed ID: 15982067 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Zhou M; Guo J; Guo LP; Bai J Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717 [TBL] [Abstract][Full Text] [Related]
20. A counter based on the electrical input/output stimuli activation of an array of quantum dots. Remacle F; Willner I; Levine RD Chemphyschem; 2005 Jul; 6(7):1239-42. PubMed ID: 15942969 [No Abstract] [Full Text] [Related] [Next] [New Search]