BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 20593458)

  • 21. Cyclization of conotoxins to improve their biopharmaceutical properties.
    Clark RJ; Akcan M; Kaas Q; Daly NL; Craik DJ
    Toxicon; 2012 Mar; 59(4):446-55. PubMed ID: 21147143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant cell culture technology-harnessing a biological approach for competitive cyclotides production.
    Dörnenburg H
    Biotechnol Lett; 2008 Aug; 30(8):1311-21. PubMed ID: 18438714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII.
    Clark RJ; Fischer H; Dempster L; Daly NL; Rosengren KJ; Nevin ST; Meunier FA; Adams DJ; Craik DJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13767-72. PubMed ID: 16162671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular proteins and mechanisms of cyclization.
    Conlan BF; Gillon AD; Craik DJ; Anderson MA
    Biopolymers; 2010; 94(5):573-83. PubMed ID: 20564019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemistry. Seamless proteins tie up their loose ends.
    Craik DJ
    Science; 2006 Mar; 311(5767):1563-4. PubMed ID: 16543448
    [No Abstract]   [Full Text] [Related]  

  • 26. Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs.
    Colgrave ML; Korsinczky MJ; Clark RJ; Foley F; Craik DJ
    Biopolymers; 2010; 94(5):665-72. PubMed ID: 20564016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A.
    Mulvenna JP; Sando L; Craik DJ
    Structure; 2005 May; 13(5):691-701. PubMed ID: 15893660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclotides: a patent review.
    Smith AB; Daly NL; Craik DJ
    Expert Opin Ther Pat; 2011 Nov; 21(11):1657-72. PubMed ID: 22017409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical synthesis and kinetic study of the smallest naturally occurring trypsin inhibitor SFTI-1 isolated from sunflower seeds and its analogues.
    Zabłotna E; Kaźmierczak K; Jaśkiewicz A; Stawikowski M; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2002 Apr; 292(4):855-9. PubMed ID: 11944892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity.
    Barry DG; Daly NL; Clark RJ; Sando L; Craik DJ
    Biochemistry; 2003 Jun; 42(22):6688-95. PubMed ID: 12779323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.
    Poth AG; Colgrave ML; Philip R; Kerenga B; Daly NL; Anderson MA; Craik DJ
    ACS Chem Biol; 2011 Apr; 6(4):345-55. PubMed ID: 21194241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability.
    Gehrmann J; Alewood PF; Craik DJ
    J Mol Biol; 1998 May; 278(2):401-15. PubMed ID: 9571060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity.
    Harris PW; Yang SH; Molina A; López G; Middleditch M; Brimble MA
    Chemistry; 2014 Apr; 20(17):5102-10. PubMed ID: 24644073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins.
    Ireland DC; Colgrave ML; Nguyencong P; Daly NL; Craik DJ
    J Mol Biol; 2006 Apr; 357(5):1522-35. PubMed ID: 16488428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant.
    Korsinczky ML; Schirra HJ; Rosengren KJ; West J; Condie BA; Otvos L; Anderson MA; Craik DJ
    J Mol Biol; 2001 Aug; 311(3):579-91. PubMed ID: 11493011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disulfide bond mutagenesis and the structure and function of the head-to-tail macrocyclic trypsin inhibitor SFTI-1.
    Korsinczky ML; Clark RJ; Craik DJ
    Biochemistry; 2005 Feb; 44(4):1145-53. PubMed ID: 15667208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR and protein structure in drug design: application to cyclotides and conotoxins.
    Daly NL; Rosengren KJ; Henriques ST; Craik DJ
    Eur Biophys J; 2011 Apr; 40(4):359-70. PubMed ID: 21290122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional solution structure of mu-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels.
    Hill JM; Alewood PF; Craik DJ
    Biochemistry; 1996 Jul; 35(27):8824-35. PubMed ID: 8688418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semienzymatic cyclization of disulfide-rich peptides using Sortase A.
    Jia X; Kwon S; Wang CA; Huang YH; Chan LY; Tan CC; Rosengren KJ; Mulvenna JP; Schroeder CI; Craik DJ
    J Biol Chem; 2014 Mar; 289(10):6627-6638. PubMed ID: 24425873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.