These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 20593855)
1. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. Fatisson J; Ghoshal S; Tufenkji N Langmuir; 2010 Aug; 26(15):12832-40. PubMed ID: 20593855 [TBL] [Abstract][Full Text] [Related]
2. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742 [TBL] [Abstract][Full Text] [Related]
3. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Basnet M; Ghoshal S; Tufenkji N Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158 [TBL] [Abstract][Full Text] [Related]
4. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
5. Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments. Ma X; He D; Jones AM; Waite TD; An T J Environ Sci (China); 2019 Mar; 77():303-311. PubMed ID: 30573094 [TBL] [Abstract][Full Text] [Related]
6. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967 [TBL] [Abstract][Full Text] [Related]
7. Effects of Rhamnolipid and Carboxymethylcellulose Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles. Bhattacharjee S; Basnet M; Tufenkji N; Ghoshal S Environ Sci Technol; 2016 Feb; 50(4):1812-20. PubMed ID: 26745244 [TBL] [Abstract][Full Text] [Related]
8. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Raychoudhury T; Naja G; Ghoshal S J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540 [TBL] [Abstract][Full Text] [Related]
9. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799 [TBL] [Abstract][Full Text] [Related]
10. Transport of polymer stabilized nano-scale zero-valent iron in porous media. Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368 [TBL] [Abstract][Full Text] [Related]
11. Characterization of nZVI mobility in a field scale test. Kocur CM; Chowdhury AI; Sakulchaicharoen N; Boparai HK; Weber KP; Sharma P; Krol MM; Austrins L; Peace C; Sleep BE; O'Carroll DM Environ Sci Technol; 2014; 48(5):2862-9. PubMed ID: 24479900 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Lin YH; Tseng HH; Wey MY; Lin MD Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828 [TBL] [Abstract][Full Text] [Related]
13. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R; Zhang N; Fang Z Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164 [TBL] [Abstract][Full Text] [Related]
14. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Laumann S; Micić V; Hofmann T Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow. Li J; Ghoshal S Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094 [TBL] [Abstract][Full Text] [Related]
16. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity. Li J; Rajajayavel SRC; Ghoshal S Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351 [TBL] [Abstract][Full Text] [Related]
17. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. HonetschlÄgerová L; Janouškovcová P; Kubal M Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314 [TBL] [Abstract][Full Text] [Related]
18. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
19. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744 [TBL] [Abstract][Full Text] [Related]
20. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]