These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 20594159)
1. Study on the relationship between cyclodextrin glycosyltransferase's thermostability and salt bridge by molecular dynamics simulation. Fu Y; Ding Y; Chen Z; Sun J; Fang W; Xu W Protein Pept Lett; 2010 Nov; 17(11):1403-11. PubMed ID: 20594159 [TBL] [Abstract][Full Text] [Related]
2. Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Leemhuis H; Rozeboom HJ; Dijkstra BW; Dijkhuizen L Proteins; 2004 Jan; 54(1):128-34. PubMed ID: 14705029 [TBL] [Abstract][Full Text] [Related]
3. MOLECULAR DYNAMICS SIMULATION TO ELUCIDATE THE THERMOSTABILITY OF B DOMAIN IN CGTASE. Fu Y; Chen Z; Zhao J Theor Biol Forum; 2015; 108(1-2):57-73. PubMed ID: 27167910 [TBL] [Abstract][Full Text] [Related]
4. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. Liu J; Yu H; Shen Z J Mol Graph Model; 2008 Nov; 27(4):529-35. PubMed ID: 18948044 [TBL] [Abstract][Full Text] [Related]
5. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study. Lee CW; Wang HJ; Hwang JK; Tseng CP PLoS One; 2014; 9(11):e112751. PubMed ID: 25393107 [TBL] [Abstract][Full Text] [Related]
6. Exploring unfolding pathway of CGTase: insight from molecular dynamics simulation. Fu Y; Ding Y; Chen Z; Xu W Riv Biol; 2009; 102(3):347-64. PubMed ID: 20533185 [TBL] [Abstract][Full Text] [Related]
7. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1. Knegtel RM; Wind RD; Rozeboom HJ; Kalk KH; Buitelaar RM; Dijkhuizen L; Dijkstra BW J Mol Biol; 1996 Mar; 256(3):611-22. PubMed ID: 8604143 [TBL] [Abstract][Full Text] [Related]
9. Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli. Jeang CL; Lin DG; Hsieh SH J Agric Food Chem; 2005 Aug; 53(16):6301-4. PubMed ID: 16076110 [TBL] [Abstract][Full Text] [Related]
10. Calcium ion contribution to thermostability of cyclodextrin glycosyltransferase is closely related to calcium-binding site CaIII. Li C; Ban X; Gu Z; Li Z J Agric Food Chem; 2013 Sep; 61(37):8836-41. PubMed ID: 23968201 [TBL] [Abstract][Full Text] [Related]
11. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity. van der Veen BA; Uitdehaag JC; Dijkstra BW; Dijkhuizen L Eur J Biochem; 2000 Jun; 267(12):3432-41. PubMed ID: 10848958 [TBL] [Abstract][Full Text] [Related]
12. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. Chen J; Yu H; Liu C; Liu J; Shen Z J Biotechnol; 2012 Dec; 164(2):354-62. PubMed ID: 23384947 [TBL] [Abstract][Full Text] [Related]
13. Rational mutagenesis of cyclodextrin glucanotransferase at the calcium binding regions for enhancement of thermostability. Goh PH; Illias RM; Goh KM Int J Mol Sci; 2012; 13(5):5307-5323. PubMed ID: 22754298 [TBL] [Abstract][Full Text] [Related]
14. Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans. Li C; Li W; Holler TP; Gu Z; Li Z Food Chem; 2014 Dec; 164():17-22. PubMed ID: 24996299 [TBL] [Abstract][Full Text] [Related]
15. Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing alpha-cyclodextrin specificity. Li Z; Zhang J; Wang M; Gu Z; Du G; Li J; Wu J; Chen J Appl Microbiol Biotechnol; 2009 Jun; 83(3):483-90. PubMed ID: 19190904 [TBL] [Abstract][Full Text] [Related]
16. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Li Z; Ban X; Gu Z; Li C; Huang M; Hong Y; Cheng L Carbohydr Polym; 2014 Aug; 108():112-7. PubMed ID: 24751254 [TBL] [Abstract][Full Text] [Related]
17. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Joo JC; Pack SP; Kim YH; Yoo YJ J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126 [TBL] [Abstract][Full Text] [Related]
18. Fusion of a family 20 carbohydrate-binding module (CBM20) with cyclodextrin glycosyltransferase of Geobacillus sp. CHB1 improves catalytic efficiency. Jia X; Guo Y; Lin X; You M; Lin C; Chen L; Chen J J Basic Microbiol; 2017 Jun; 57(6):471-480. PubMed ID: 28422446 [TBL] [Abstract][Full Text] [Related]
19. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1. Xie T; Song B; Yue Y; Chao Y; Qian S J Biotechnol; 2014 Jan; 170():10-6. PubMed ID: 24246271 [TBL] [Abstract][Full Text] [Related]
20. [Enhanced storage stability of recombinant enzyme preparation of alpha-CGTase from Paenibacillus macerans by chemical additives]. Zheng X; Wu D; Li Z; Chen J; Wu J Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):185-95. PubMed ID: 21650042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]