BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 20594269)

  • 21. Expression of ADAMs and their inhibitors in sputum from patients with asthma.
    Paulissen G; Rocks N; Quesada-Calvo F; Gosset P; Foidart JM; Noel A; Louis R; Cataldo DD
    Mol Med; 2006; 12(7-8):171-9. PubMed ID: 17088949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MMPs and ADAMTSs: functional studies.
    Flannery CR
    Front Biosci; 2006 Jan; 11():544-69. PubMed ID: 16146752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis.
    Jones GC; Riley GP
    Arthritis Res Ther; 2005; 7(4):160-9. PubMed ID: 15987500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the 'usual suspects'.
    Yang CY; Chanalaris A; Troeberg L
    Osteoarthritis Cartilage; 2017 Jul; 25(7):1000-1009. PubMed ID: 28216310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ADAMs in cancer cell proliferation and progression.
    Mochizuki S; Okada Y
    Cancer Sci; 2007 May; 98(5):621-8. PubMed ID: 17355265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.
    Takeda S
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27196928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of ADAMTSs in arthritis.
    Lin EA; Liu CJ
    Protein Cell; 2010 Jan; 1(1):33-47. PubMed ID: 21203996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases.
    Liu N; Zhou B; Zhu G
    Med Sci Monit; 2016 Jun; 22():1936-8. PubMed ID: 27272560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration.
    Yurube T; Takada T; Suzuki T; Kakutani K; Maeno K; Doita M; Kurosaka M; Nishida K
    Arthritis Res Ther; 2012 Mar; 14(2):R51. PubMed ID: 22394620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes.
    Flannery CR; Little CB; Caterson B; Hughes CE
    Matrix Biol; 1999 Jun; 18(3):225-37. PubMed ID: 10429942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of metalloproteinases in platelet function.
    Santos-Martínez MJ; Medina C; Jurasz P; Radomski MW
    Thromb Res; 2008; 121(4):535-42. PubMed ID: 17681591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of cell invasion and signalling pathways in the pituitary adenoma cell line, HP-75, by reversion-inducing cysteine-rich protein with kazal motifs (RECK).
    Yoshida D; Nomura R; Teramoto A
    J Neurooncol; 2008 Sep; 89(2):141-50. PubMed ID: 18493720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of ADAM and ADAMTS disintegrin and metalloproteinases in normal pregnancy and preeclampsia.
    Qu H; Khalil RA
    Biochem Pharmacol; 2022 Dec; 206():115266. PubMed ID: 36191626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains.
    Gerhardt S; Hassall G; Hawtin P; McCall E; Flavell L; Minshull C; Hargreaves D; Ting A; Pauptit RA; Parker AE; Abbott WM
    J Mol Biol; 2007 Nov; 373(4):891-902. PubMed ID: 17897672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling.
    Russell JJ; Grisanti LA; Brown SM; Bailey CA; Bender SB; Chandrasekar B
    Cell Signal; 2021 Jul; 83():109993. PubMed ID: 33781845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease.
    Cawston TE; Wilson AJ
    Best Pract Res Clin Rheumatol; 2006 Oct; 20(5):983-1002. PubMed ID: 16980219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metalloproteinases: their role in arthritis and potential as therapeutic targets.
    Clark IM; Parker AE
    Expert Opin Ther Targets; 2003 Feb; 7(1):19-34. PubMed ID: 12556200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Matrix-degrading metalloproteinases and their roles in joint destruction.
    Okada Y
    Mod Rheumatol; 2000 Sep; 10(3):121-8. PubMed ID: 24383588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential gene expression profiling of metalloproteinases and their inhibitors: a comparison between bovine intervertebral disc nucleus pulposus cells and articular chondrocytes.
    Cui Y; Yu J; Urban JP; Young DA
    Spine (Phila Pa 1976); 2010 May; 35(11):1101-8. PubMed ID: 20473119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases.
    Pluda S; Mazzocato Y; Angelini A
    Front Mol Biosci; 2021; 8():703715. PubMed ID: 34368231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.