These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20594315)

  • 1. Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice.
    Meissner M; Nijstad N; Kuipers F; Tietge UJ
    Nutr Metab (Lond); 2010 Jul; 7():54. PubMed ID: 20594315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice.
    Dikkers A; Freak de Boer J; Annema W; Groen AK; Tietge UJ
    Hepatology; 2013 Jul; 58(1):293-303. PubMed ID: 23401258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise enhances whole-body cholesterol turnover in mice.
    Meissner M; Havinga R; Boverhof R; Kema I; Groen AK; Kuipers F
    Med Sci Sports Exerc; 2010 Aug; 42(8):1460-8. PubMed ID: 20139791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic ABCG5/G8 overexpression substantially increases biliary cholesterol secretion but does not impact in vivo macrophage-to-feces RCT.
    Dikkers A; de Boer JF; Groen AK; Tietge UJ
    Atherosclerosis; 2015 Dec; 243(2):402-6. PubMed ID: 26520893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice.
    Wiersma H; Gatti A; Nijstad N; Kuipers F; Tietge UJ
    J Lipid Res; 2009 Aug; 50(8):1571-80. PubMed ID: 19252221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice.
    Meissner M; Lombardo E; Havinga R; Tietge UJ; Kuipers F; Groen AK
    Atherosclerosis; 2011 Oct; 218(2):323-9. PubMed ID: 21802084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice.
    Freark de Boer J; Annema W; Schreurs M; van der Veen JN; van der Giet M; Nijstad N; Kuipers F; Tietge UJF
    J Lipid Res; 2012 Mar; 53(3):348-357. PubMed ID: 22180634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice.
    Wu JE; Basso F; Shamburek RD; Amar MJ; Vaisman B; Szakacs G; Joyce C; Tansey T; Freeman L; Paigen BJ; Thomas F; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 2004 May; 279(22):22913-25. PubMed ID: 15044450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment.
    Maugeais C; Annema W; Blum D; Mary JL; Tietge UJ
    Atherosclerosis; 2013 Jul; 229(1):94-101. PubMed ID: 23725986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta.
    Pinto PR; Rocco DD; Okuda LS; Machado-Lima A; Castilho G; da Silva KS; Gomes DJ; Pinto Rde S; Iborra RT; Ferreira Gda S; Nakandakare ER; Machado UF; Correa-Giannella ML; Catanozi S; Passarelli M
    Lipids Health Dis; 2015 Sep; 14():109. PubMed ID: 26377330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A(2).
    Annema W; Nijstad N; Tölle M; de Boer JF; Buijs RV; Heeringa P; van der Giet M; Tietge UJ
    J Lipid Res; 2010 Apr; 51(4):743-54. PubMed ID: 20061576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans.
    Davidson MH; Voogt J; Luchoomun J; Decaris J; Killion S; Boban D; Glass A; Mohammad H; Lu Y; Villegas D; Neese R; Hellerstein M; Neff D; Musliner T; Tomassini JE; Turner S
    Atherosclerosis; 2013 Oct; 230(2):322-9. PubMed ID: 24075764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of intestinal microbiota increases ß-cyclodextrin stimulated reverse cholesterol transport.
    Mistry RH; Verkade HJ; Tietge UJF
    Mol Nutr Food Res; 2017 May; 61(5):. PubMed ID: 28087885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice: Role of Scavenger Receptor Class B Type I/ATP-Binding Cassette Transporter A1-Dependent Pathways.
    Takiguchi S; Ayaori M; Yakushiji E; Nishida T; Nakaya K; Sasaki M; Iizuka M; Uto-Kondo H; Terao Y; Yogo M; Komatsu T; Ogura M; Ikewaki K
    Arterioscler Thromb Vasc Biol; 2018 Jul; 38(7):1454-1467. PubMed ID: 29748333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease.
    Wang HH; Liu M; Portincasa P; Wang DQ
    Adv Exp Med Biol; 2020; 1276():105-136. PubMed ID: 32705597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8.
    Calpe-Berdiel L; Rotllan N; Fiévet C; Roig R; Blanco-Vaca F; Escolà-Gil JC
    J Lipid Res; 2008 Sep; 49(9):1904-11. PubMed ID: 18509196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse Cholesterol Transport Is Increased in Germ-Free Mice-Brief Report.
    Mistry RH; Verkade HJ; Tietge UJ
    Arterioscler Thromb Vasc Biol; 2017 Mar; 37(3):419-422. PubMed ID: 28062491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models.
    Cedó L; Metso J; Santos D; García-León A; Plana N; Sabate-Soler S; Rotllan N; Rivas-Urbina A; Méndez-Lara KA; Tondo M; Girona J; Julve J; Pallarès V; Benitez-Amaro A; Llorente-Cortes V; Pérez A; Gómez-Coronado D; Ruotsalainen AK; Levonen AL; Sanchez-Quesada JL; Masana L; Kovanen PT; Jauhiainen M; Lee-Rueckert M; Blanco-Vaca F; Escolà-Gil JC
    Circ Res; 2020 Aug; 127(6):778-792. PubMed ID: 32495699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice.
    Tancevski I; Demetz E; Eller P; Duwensee K; Hoefer J; Heim C; Stanzl U; Wehinger A; Auer K; Karer R; Huber J; Schgoer W; Van Eck M; Vanhoutte J; Fievet C; Stellaard F; Rudling M; Patsch JR; Ritsch A
    PLoS One; 2010 Jan; 5(1):e8722. PubMed ID: 20090943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammation impairs reverse cholesterol transport in vivo.
    McGillicuddy FC; de la Llera Moya M; Hinkle CC; Joshi MR; Chiquoine EH; Billheimer JT; Rothblat GH; Reilly MP
    Circulation; 2009 Mar; 119(8):1135-45. PubMed ID: 19221221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.