These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 20594417)
1. Demethylation of theophylline (1,3-dimethylxanthine) to 1-methylxanthine: the first step of an antioxidising cascade. Santos PM; Silva SA; Justino GC; Vieira AJ Redox Rep; 2010; 15(3):138-44. PubMed ID: 20594417 [TBL] [Abstract][Full Text] [Related]
2. Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli. Algharrawi KH; Summers RM; Gopishetty S; Subramanian M Microb Cell Fact; 2015 Dec; 14():203. PubMed ID: 26691652 [TBL] [Abstract][Full Text] [Related]
3. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909 [TBL] [Abstract][Full Text] [Related]
4. Influence of methylxanthine-containing foods on theophylline metabolism and kinetics. Monks TJ; Caldwell J; Smith RL Clin Pharmacol Ther; 1979 Oct; 26(4):513-24. PubMed ID: 487699 [TBL] [Abstract][Full Text] [Related]
5. Secondary metabolism of theophylline biotransformation products in man--route of formation of 1-methyluric acid. Birkett DJ; Miners JO; Attwood J Br J Clin Pharmacol; 1983 Jan; 15(1):117-9. PubMed ID: 6849735 [TBL] [Abstract][Full Text] [Related]
6. Isolation, characterization and application of theophylline-degrading Aspergillus fungi. Zhou B; Ma C; Xia T; Li X; Zheng C; Wu T; Liu X Microb Cell Fact; 2020 Mar; 19(1):72. PubMed ID: 32192512 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands. Lee SW; Zhao L; Pardi A; Xia T Biochemistry; 2010 Apr; 49(13):2943-51. PubMed ID: 20214401 [TBL] [Abstract][Full Text] [Related]
8. Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium Ma YX; Wu XH; Wu HS; Dong ZB; Ye JH; Zheng XQ; Liang YR; Lu J J Microbiol Biotechnol; 2018 Jul; 28(7):1147-1155. PubMed ID: 29926702 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Campbell ME; Grant DM; Inaba T; Kalow W Drug Metab Dispos; 1987; 15(2):237-49. PubMed ID: 2882985 [TBL] [Abstract][Full Text] [Related]
10. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. Zhou B; Ma C; Zheng C; Xia T; Ma B; Liu X BMC Microbiol; 2020 Aug; 20(1):269. PubMed ID: 32854634 [TBL] [Abstract][Full Text] [Related]
11. Production of 1-methylxanthine via the biodegradation of theophylline by an optimized Escherichia coli strain. Mock MB; Zhang S; Pakulski K; Hutchison C; Kapperman M; Dreischarf T; Summers RM J Biotechnol; 2024 Jan; 379():25-32. PubMed ID: 38029843 [TBL] [Abstract][Full Text] [Related]
12. The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Monks TJ; Lawrie CA; Caldwell J Biopharm Drug Dispos; 1981; 2(1):31-7. PubMed ID: 7236869 [TBL] [Abstract][Full Text] [Related]
13. Theophylline metabolism during the first month of life and development. Bonati M; Latini R; Marra G; Assael BM; Parini R Pediatr Res; 1981 Apr; 15(4 Pt 1):304-8. PubMed ID: 7220153 [TBL] [Abstract][Full Text] [Related]
14. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Sarkar M; Polk RE; Guzelian PS; Hunt C; Karnes HT Antimicrob Agents Chemother; 1990 Apr; 34(4):594-9. PubMed ID: 2344166 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetics of theophylline and 3-methylxanthine in guinea pigs. I. Single dose administration. Madsen SM; Ribel U Acta Pharmacol Toxicol (Copenh); 1981 Jan; 48(1):1-7. PubMed ID: 7223434 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of theophylline and its inhibition by fluoroquinolones in rat hepatic microsomes. Davis JD; Aarons L; Houston JB Xenobiotica; 1995 Jun; 25(6):563-73. PubMed ID: 7483657 [TBL] [Abstract][Full Text] [Related]
18. Structure and redox properties of radicals derived from one-electron oxidised methylxanthines. Santos PM; Telo JP; Vieira AJ Redox Rep; 2008; 13(3):123-33. PubMed ID: 18544230 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the developmental toxicity of theophylline, dimethyluric acid, and methylxanthine metabolites using Xenopus. Fort DJ; Stover EL; Propst T; Hull MA; Bantle JA Drug Chem Toxicol; 1996 Nov; 19(4):267-78. PubMed ID: 8972234 [TBL] [Abstract][Full Text] [Related]
20. Theophylline metabolism by human, rabbit and rat liver microsomes and by purified forms of cytochrome P450. McManus ME; Miners JO; Gregor D; Stupans I; Birkett DJ J Pharm Pharmacol; 1988 Jun; 40(6):388-91. PubMed ID: 2901468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]