These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20594820)

  • 21. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase.
    Collier JH; Messersmith PB
    Bioconjug Chem; 2003; 14(4):748-55. PubMed ID: 12862427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of collagen peptides into microflorettes via metal coordination.
    Pires MM; Chmielewski J
    J Am Chem Soc; 2009 Feb; 131(7):2706-12. PubMed ID: 19182901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology.
    Colombo G; Soto P; Gazit E
    Trends Biotechnol; 2007 May; 25(5):211-8. PubMed ID: 17379339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-induced folding of a designed metalloprotein.
    Kharenko OA; Ogawa MY
    J Inorg Biochem; 2004 Nov; 98(11):1971-4. PubMed ID: 15522423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides.
    Woolfson DN
    Biopolymers; 2010; 94(1):118-27. PubMed ID: 20091877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds.
    Romera D; Couleaud P; Mejias SH; Aires A; Cortajarena AL
    Biochem Soc Trans; 2015 Oct; 43(5):825-31. PubMed ID: 26517889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide-bond modification for metal coordination: peptides containing two hydroxamate groups.
    Ye Y; Liu M; Kao JL; Marshall GR
    Biopolymers; 2003; 71(4):489-515. PubMed ID: 14517900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-inorganic array construction: design and synthesis of the building blocks.
    Bogdan ND; Matache M; Meier VM; Dobrotă C; Dumitru I; Roiban GD; Funeriu DP
    Chemistry; 2010 Feb; 16(7):2170-80. PubMed ID: 20063328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly and application of diphenylalanine-based nanostructures.
    Yan X; Zhu P; Li J
    Chem Soc Rev; 2010 Jun; 39(6):1877-90. PubMed ID: 20502791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noncovalent multivalent assembly of jun peptides on a leucine zipper dendrimer displaying fos peptides.
    Zhou M; Ghosh I
    Org Lett; 2004 Sep; 6(20):3561-4. PubMed ID: 15387548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering responsive mechanisms to control the assembly of peptide-based nanostructures.
    Dublin S; Zimenkov Y; Conticello VP
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):653-9. PubMed ID: 19614570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination.
    Hsu W; Chen YL; Horng JC
    Langmuir; 2012 Feb; 28(6):3194-9. PubMed ID: 22243030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigations of metal-coordinated peptides as supramolecular synthons.
    Gerhardt WW; Weck M
    J Org Chem; 2006 Aug; 71(17):6333-41. PubMed ID: 16901113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design.
    Boyle AL; Bromley EH; Bartlett GJ; Sessions RB; Sharp TH; Williams CL; Curmi PM; Forde NR; Linke H; Woolfson DN
    J Am Chem Soc; 2012 Sep; 134(37):15457-67. PubMed ID: 22917063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Domain swapping in materials design.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    Biopolymers; 2010; 94(1):141-55. PubMed ID: 20091872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent capture: a natural complement to self-assembly.
    Hartgerink JD
    Curr Opin Chem Biol; 2004 Dec; 8(6):604-9. PubMed ID: 15556403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.