BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20594827)

  • 1. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.
    Pradhan R; Misra M; Erickson L; Mohanty A
    Bioresour Technol; 2010 Nov; 101(21):8489-91. PubMed ID: 20594827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological nitrate removal using wheat straw and PLA as substrate.
    Fan Z; Hu J; Wang J
    Environ Technol; 2012; 33(19-21):2369-74. PubMed ID: 23393979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compostability assessment of nano-reinforced poly(lactic acid) films.
    Balaguer MP; Aliaga C; Fito C; Hortal M
    Waste Manag; 2016 Feb; 48():143-155. PubMed ID: 26589869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory composting of extruded poly(lactic acid) sheets.
    Ghorpade VM; Gennadios A; Hanna MA
    Bioresour Technol; 2001 Jan; 76(1):57-61. PubMed ID: 11315811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polylactide-based renewable green composites from agricultural residues and their hybrids.
    Nyambo C; Mohanty AK; Misra M
    Biomacromolecules; 2010 Jun; 11(6):1654-60. PubMed ID: 20499931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial production of biopolymers from the renewable resource wheat straw.
    Gasser E; Ballmann P; Dröge S; Bohn J; König H
    J Appl Microbiol; 2014 Oct; 117(4):1035-44. PubMed ID: 24947657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.
    Ahn HK; Huda MS; Smith MC; Mulbry W; Schmidt WF; Reeves JB
    Bioresour Technol; 2011 Apr; 102(7):4930-3. PubMed ID: 21320772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering.
    Moran JM; Pazzano D; Bonassar LJ
    Tissue Eng; 2003 Feb; 9(1):63-70. PubMed ID: 12625955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives.
    Sharma S; Majumdar A; Butola BS
    Int J Biol Macromol; 2021 Jun; 181():1092-1103. PubMed ID: 33892039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradability evaluation of polymers by ISO 14855-2.
    Funabashi M; Ninomiya F; Kunioka M
    Int J Mol Sci; 2009 Aug; 10(8):3635-3654. PubMed ID: 20111676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.
    Zuo YF; Gu J; Qiao Z; Tan H; Cao J; Zhang Y
    Int J Biol Macromol; 2015 Jan; 72():391-402. PubMed ID: 25192854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation behavior of soy protein-wheat gluten films in simulated soil conditions.
    Park SK; Hettiarachchy NS; Were L
    J Agric Food Chem; 2000 Jul; 48(7):3027-31. PubMed ID: 10898660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of substrate degradation in composting of sewage sludge.
    Zhang J; Gao D; Chen TB; Zheng GD; Chen J; Ma C; Guo SL; Du W
    Waste Manag; 2010 Oct; 30(10):1931-8. PubMed ID: 20478699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on in vivo biocompatibility and biodegradation of absorbable material of polylactic acid].
    Ruan DK
    Zhonghua Wai Ke Za Zhi; 1993 Sep; 31(9):568-70. PubMed ID: 8033728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.