These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 20594941)
1. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti. Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941 [TBL] [Abstract][Full Text] [Related]
2. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mandon K; Osterås M; Boncompagni E; Trinchant JC; Spennato G; Poggi MC; Le Rudulier D Mol Plant Microbe Interact; 2003 Aug; 16(8):709-19. PubMed ID: 12906115 [TBL] [Abstract][Full Text] [Related]
3. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. Oláh B; Kiss E; Györgypál Z; Borzi J; Cinege G; Csanádi G; Batut J; Kondorosi A; Dusha I Mol Plant Microbe Interact; 2001 Jul; 14(7):887-94. PubMed ID: 11437262 [TBL] [Abstract][Full Text] [Related]
4. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. Chao TC; Becker A; Buhrmester J; Pühler A; Weidner S J Bacteriol; 2004 Jun; 186(11):3609-20. PubMed ID: 15150249 [TBL] [Abstract][Full Text] [Related]
5. Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. García-Rodríguez FM; Toro N Mol Plant Microbe Interact; 2000 Jun; 13(6):583-91. PubMed ID: 10830257 [TBL] [Abstract][Full Text] [Related]
6. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
7. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
8. Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. Yurgel SN; Kahn ML J Bacteriol; 2005 Feb; 187(3):1161-72. PubMed ID: 15659691 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
10. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Capela D; Filipe C; Bobik C; Batut J; Bruand C Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739 [TBL] [Abstract][Full Text] [Related]
11. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Gong ZY; He ZS; Zhu JB; Yu GQ; Zou HS Cell Res; 2006 Oct; 16(10):818-29. PubMed ID: 17001343 [TBL] [Abstract][Full Text] [Related]
12. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis. Lu D; Tang G; Wang D; Luo L Acta Biochim Biophys Sin (Shanghai); 2013 Oct; 45(10):882-8. PubMed ID: 23883684 [TBL] [Abstract][Full Text] [Related]
13. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015 [TBL] [Abstract][Full Text] [Related]
15. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931 [TBL] [Abstract][Full Text] [Related]
16. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
17. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. Viguier C; O Cuív P; Clarke P; O'Connell M FEMS Microbiol Lett; 2005 May; 246(2):235-42. PubMed ID: 15899411 [TBL] [Abstract][Full Text] [Related]
18. Expression of the small regulatory RNA gene mmgR is regulated negatively by AniA and positively by NtrC in Sinorhizobium meliloti 2011. Ceizel Borella G; Lagares A; Valverde C Microbiology (Reading); 2018 Jan; 164(1):88-98. PubMed ID: 29214973 [TBL] [Abstract][Full Text] [Related]
19. Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. Vences-Guzmán MA; Geiger O; Sohlenkamp C J Bacteriol; 2008 Oct; 190(20):6846-56. PubMed ID: 18708506 [TBL] [Abstract][Full Text] [Related]
20. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Pobigaylo N; Szymczak S; Nattkemper TW; Becker A Mol Plant Microbe Interact; 2008 Feb; 21(2):219-31. PubMed ID: 18184066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]