These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20595083)

  • 21. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dielectrophoretic trapping of dissociated fetal cortical rat neurons.
    Heida T; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2001 Aug; 48(8):921-30. PubMed ID: 11499529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An autonomous implantable computer for neural recording and stimulation in unrestrained primates.
    Mavoori J; Jackson A; Diorio C; Fetz E
    J Neurosci Methods; 2005 Oct; 148(1):71-7. PubMed ID: 16102841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in chest electrode impedance.
    Lateef F; Lim SH; Anantharaman V; Lim CS
    Am J Emerg Med; 2000 Jul; 18(4):381-4. PubMed ID: 10919523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip.
    Wang L; Wang L; Yin H; Xing W; Yu Z; Guo M; Cheng J
    Biosens Bioelectron; 2010 Jan; 25(5):990-5. PubMed ID: 19818595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y; Ginosar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.
    Widge AS; Jeffries-El M; Cui X; Lagenaur CF; Matsuoka Y
    Biosens Bioelectron; 2007 Mar; 22(8):1723-32. PubMed ID: 17015008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal-to-motion artifact ratio versus frequency for impedance pneumography.
    Rosell J; Webster JG
    IEEE Trans Biomed Eng; 1995 Mar; 42(3):321-3. PubMed ID: 7698789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes.
    Rahman AR; Lo CM; Bhansali S
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Measuring electrical impedance of organs--instrumental equipment for research and clinical use].
    Gersing E
    Biomed Tech (Berl); 1991; 36(1-2):6-11. PubMed ID: 2031990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time management of faulty electrodes in electrical impedance tomography.
    Hartinger AE; Guardo R; Adler A; Gagnon H
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):369-77. PubMed ID: 19272943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinguishing between activated and nonactivated eosinophils by AC impedance measurements.
    Lacy F; Kadima-Nzuji M; Malveaux FJ; Carter EL
    IEEE Trans Biomed Eng; 1996 Feb; 43(2):218-21. PubMed ID: 8682533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for Electrical Impedance Tomography of fast neural activity.
    Gilad O; Holder DS
    Neuroimage; 2009 Aug; 47(2):514-22. PubMed ID: 19426819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes.
    McConnell GC; Butera RJ; Bellamkonda RV
    J Neural Eng; 2009 Oct; 6(5):055005. PubMed ID: 19721187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal-glial interactions: complexity of neurite outgrowth correlates with substrate adhesivity of serotonergic neurons.
    Lieth E; McClay DR; Lauder JM
    Glia; 1990; 3(3):169-79. PubMed ID: 2141593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedimetric sensing of cells on polypyrrole-based conducting polymers.
    Ateh DD; Waterworth A; Walker D; Brown BH; Navsaria H; Vadgama P
    J Biomed Mater Res A; 2007 Nov; 83(2):391-400. PubMed ID: 17450583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.