These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 20595090)
1. Markov models for biogeography-based optimization. Simon D; Ergezer M; Du D; Rarick R IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):299-306. PubMed ID: 20595090 [TBL] [Abstract][Full Text] [Related]
2. A probabilistic analysis of a simplified biogeography-based optimization algorithm. Simon D Evol Comput; 2011; 19(2):167-88. PubMed ID: 20807078 [TBL] [Abstract][Full Text] [Related]
3. Statistical Mechanics Approximation of Biogeography-Based Optimization. Ma H; Simon D; Fei M Evol Comput; 2016; 24(3):427-58. PubMed ID: 26172435 [TBL] [Abstract][Full Text] [Related]
4. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem. Lim WL; Wibowo A; Desa MI; Haron H Comput Intell Neurosci; 2016; 2016():5803893. PubMed ID: 26819585 [TBL] [Abstract][Full Text] [Related]
5. A Bayesian method for construction of Markov models to describe dynamics on various time-scales. Rains EK; Andersen HC J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993 [TBL] [Abstract][Full Text] [Related]
6. The coalescence time of sampled genes in the structured coalescent model. Notohara M; Umeda T Theor Popul Biol; 2006 Nov; 70(3):289-99. PubMed ID: 16828136 [TBL] [Abstract][Full Text] [Related]
7. Decomposition and adaptive weight adjustment method with biogeography/complex algorithm for many-objective optimization. Chen W; Guohua Z PLoS One; 2020; 15(10):e0240131. PubMed ID: 33035263 [TBL] [Abstract][Full Text] [Related]
8. Combining convergence and diversity in evolutionary multiobjective optimization. Laumanns M; Thiele L; Deb K; Zitzler E Evol Comput; 2002; 10(3):263-82. PubMed ID: 12227996 [TBL] [Abstract][Full Text] [Related]
9. Toward a theory of evolutionary computation. Eberbach E Biosystems; 2005 Oct; 82(1):1-19. PubMed ID: 16102892 [TBL] [Abstract][Full Text] [Related]
10. Drift and scaling in estimation of distribution algorithms. Shapiro JL Evol Comput; 2005; 13(1):99-123. PubMed ID: 15901428 [TBL] [Abstract][Full Text] [Related]
11. A pheromone-rate-based analysis on the convergence time of ACO algorithm. Huang H; Wu CG; Hao ZF IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):910-23. PubMed ID: 19380276 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary squeaky wheel optimization: a new framework for analysis. Li J; Parkes AJ; Burke EK Evol Comput; 2011; 19(3):405-28. PubMed ID: 21265626 [TBL] [Abstract][Full Text] [Related]
13. Efficient and scalable Pareto optimization by evolutionary local selection algorithms. Menczer F; Degeratu M; Street WN Evol Comput; 2000; 8(2):223-47. PubMed ID: 10843522 [TBL] [Abstract][Full Text] [Related]
14. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems. Shabanzadeh P; Yusof R Comput Math Methods Med; 2015; 2015():802754. PubMed ID: 26336509 [TBL] [Abstract][Full Text] [Related]
15. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms. Mitavskiy B; Cannings C Evol Comput; 2009; 17(3):343-77. PubMed ID: 19708772 [TBL] [Abstract][Full Text] [Related]
16. Estimation of distribution algorithms with Kikuchi approximations. Santana R Evol Comput; 2005; 13(1):67-97. PubMed ID: 15901427 [TBL] [Abstract][Full Text] [Related]
17. A new method for modeling the behavior of finite population evolutionary algorithms. Motoki T Evol Comput; 2010; 18(3):451-89. PubMed ID: 20560763 [TBL] [Abstract][Full Text] [Related]