These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20595609)
1. Does the hydrated electron occupy a cavity? Larsen RE; Glover WJ; Schwartz BJ Science; 2010 Jul; 329(5987):65-9. PubMed ID: 20595609 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons. Larsen RE; Schwartz BJ J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519 [TBL] [Abstract][Full Text] [Related]
3. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. Zho CC; Schwartz BJ J Phys Chem B; 2016 Dec; 120(49):12604-12614. PubMed ID: 27973828 [TBL] [Abstract][Full Text] [Related]
4. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
5. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. Casey JR; Larsen RE; Schwartz BJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233 [TBL] [Abstract][Full Text] [Related]
6. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study. Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. Zho CC; Farr EP; Glover WJ; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174 [TBL] [Abstract][Full Text] [Related]
8. Comment on "Does the hydrated electron occupy a cavity?". Turi L; Madarász A Science; 2011 Mar; 331(6023):1387; author reply 1387. PubMed ID: 21415337 [TBL] [Abstract][Full Text] [Related]
9. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. Farr EP; Zho CC; Challa JR; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177 [TBL] [Abstract][Full Text] [Related]
10. To be or not to be in a cavity: the hydrated electron dilemma. Casey JR; Kahros A; Schwartz BJ J Phys Chem B; 2013 Nov; 117(46):14173-82. PubMed ID: 24160853 [TBL] [Abstract][Full Text] [Related]
11. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy. Larsen RE; Schwartz BJ J Phys Chem B; 2006 May; 110(19):9692-7. PubMed ID: 16686520 [TBL] [Abstract][Full Text] [Related]
12. The role of solvent structure in the absorption spectrum of solvated electrons: mixed quantum/classical simulations in tetrahydrofuran. Bedard-Hearn MJ; Larsen RE; Schwartz BJ J Chem Phys; 2005 Apr; 122(13):134506. PubMed ID: 15847480 [TBL] [Abstract][Full Text] [Related]
13. Full configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons. Larsen RE; Schwartz BJ J Phys Chem B; 2006 Jan; 110(2):1006-14. PubMed ID: 16471635 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of electron solvation in molecular clusters. Ehrler OT; Neumark DM Acc Chem Res; 2009 Jun; 42(6):769-77. PubMed ID: 19361211 [TBL] [Abstract][Full Text] [Related]
15. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? Turi L J Chem Theory Comput; 2015 Apr; 11(4):1745-55. PubMed ID: 26889512 [TBL] [Abstract][Full Text] [Related]
16. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. Glover WJ; Schwartz BJ J Chem Theory Comput; 2016 Oct; 12(10):5117-5131. PubMed ID: 27576177 [TBL] [Abstract][Full Text] [Related]
17. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. Casey JR; Schwartz BJ; Glover WJ J Phys Chem Lett; 2016 Aug; 7(16):3192-8. PubMed ID: 27479028 [TBL] [Abstract][Full Text] [Related]
19. Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory. Herbert JM; Jacobson LD J Phys Chem A; 2011 Dec; 115(50):14470-83. PubMed ID: 22032635 [TBL] [Abstract][Full Text] [Related]
20. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron. Larsen RE; Bedard-Hearn MJ; Schwartz BJ J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]