These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20595610)

  • 1. Experimental results for H2 formation from H- and H and implications for first star formation.
    Kreckel H; Bruhns H; Cízek M; Glover SC; Miller KA; Urbain X; Savin DW
    Science; 2010 Jul; 329(5987):69-71. PubMed ID: 20595610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of Population III binaries from cosmological initial conditions.
    Turk MJ; Abel T; O'Shea B
    Science; 2009 Jul; 325(5940):601-5. PubMed ID: 19589964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of the first star in the Universe.
    Abel T; Bryan GL; Norman ML
    Science; 2002 Jan; 295(5552):93-8. PubMed ID: 11711636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of the first low-mass stars from gas with low carbon and oxygen abundances.
    Bromm V; Loeb A
    Nature; 2003 Oct; 425(6960):812-4. PubMed ID: 14574405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-mass relics of early star formation.
    Schneider R; Ferrara A; Salvaterra R; Omukai K; Bromm V
    Nature; 2003 Apr; 422(6934):869-71. PubMed ID: 12712198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star.
    Umeda H; Nomoto K
    Nature; 2003 Apr; 422(6934):871-3. PubMed ID: 12712199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of a massive protostar through the disk accretion of gas.
    Chini R; Hoffmeister V; Kimeswenger S; Nielbock M; Nürnberger D; Schmidtobreick L; Sterzik M
    Nature; 2004 May; 429(6988):155-7. PubMed ID: 15141204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the first stars.
    Bromm V
    Rep Prog Phys; 2013 Nov; 76(11):112901. PubMed ID: 24168986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Star formation around supermassive black holes.
    Bonnell IA; Rice WK
    Science; 2008 Aug; 321(5892):1060-2. PubMed ID: 18719276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel merged beams apparatus to study anion-neutral reactions.
    Bruhns H; Kreckel H; Miller K; Lestinsky M; Seredyuk B; Mitthumsiri W; Schmitt BL; Schnell M; Urbain X; Rappaport ML; Havener CC; Savin DW
    Rev Sci Instrum; 2010 Jan; 81(1):013112. PubMed ID: 20113086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosynthetic signatures of the first stars.
    Frebel A; Aoki W; Christlieb N; Ando H; Asplund M; Barklem PS; Beers TC; Eriksson K; Fechner C; Fujimoto MY; Honda S; Kajino T; Minezaki T; Nomoto K; Norris JE; Ryan SG; Takada-Hidai M; Tsangarides S; Yoshii Y
    Nature; 2005 Apr; 434(7035):871-3. PubMed ID: 15829957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of reagent rotation on (H-, D2) and (D-, H2) collisions: a quantum mechanical study.
    Giri K; Sathyamurthy N
    J Phys Chem A; 2006 Dec; 110(51):13843-9. PubMed ID: 17181342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cosmological density of baryons from observations of 3He+ in the Milky Way.
    Bania TM; Rood RT; Balser DS
    Nature; 2002 Jan; 415(6867):54-7. PubMed ID: 11780112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant primordial star formation at redshifts z approximately 3-4.
    Jimenez R; Haiman Z
    Nature; 2006 Mar; 440(7083):501-4. PubMed ID: 16554812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative association of He+ with H2 at temperatures below 100 K.
    Mrugała F; Kraemer WP
    J Chem Phys; 2005 Jun; 122(22):224321. PubMed ID: 15974682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A minimum column density of 1 g cm(-2) for massive star formation.
    Krumholz MR; McKee CF
    Nature; 2008 Feb; 451(7182):1082-4. PubMed ID: 18305539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.
    McKee CF; Tan JC
    Nature; 2002 Mar; 416(6876):59-61. PubMed ID: 11882889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision-induced absorption by H2 pairs: from hundreds to thousands of kelvin.
    Abel M; Frommhold L; Li X; Hunt KL
    J Phys Chem A; 2011 Jun; 115(25):6805-12. PubMed ID: 21207941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Star Formation in W49A: Gravitational Collapse of the Molecular Cloud Core Toward a Ring of Massive Stars.
    Welch WJ; Dreher JW; Jackson JM; Terebey S; Vogel SN
    Science; 1987 Dec; 238(4833):1550-5. PubMed ID: 17784292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substantial reservoirs of molecular hydrogen in the debris disks around young stars.
    Thi WF; Blake GA; van Dishoeck EF; van Zadelhoff GJ; Horn JM; Becklin EE; Mannings V; Sargent AI; van Den Ancker ME; Natta A
    Nature; 2001 Jan; 409(6816):60-3. PubMed ID: 11343110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.