These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20595925)

  • 1. The strength profile of the thoracolumbar endplate reflects the sagittal contours of the spine.
    Bailey CS; Sjovold SG; Dvorak MF; Fisher CG; Oxland TR
    Spine (Phila Pa 1976); 2011 Jan; 36(2):124-8. PubMed ID: 20595925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies.
    Oxland TR; Grant JP; Dvorak MF; Fisher CG
    Spine (Phila Pa 1976); 2003 Apr; 28(8):771-7. PubMed ID: 12698119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal ligament loading during axial distraction: a biomechanical model.
    Roberts CS; Voor MJ; Rose SM; Glassman SD
    Am J Orthop (Belle Mead NJ); 1998 Jun; 27(6):434-40. PubMed ID: 9652886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures.
    Hongo M; Abe E; Shimada Y; Murai H; Ishikawa N; Sato K
    Spine (Phila Pa 1976); 1999 Jun; 24(12):1197-202. PubMed ID: 10382245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The middle layer of lumbar fascia can transmit tensile forces capable of fracturing the lumbar transverse processes: an experimental study.
    Barker PJ; Freeman AD; Urquhart DM; Anderson CR; Briggs CA
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):505-9. PubMed ID: 20359797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy.
    Fotoohabadi MR; Tully EA; Galea MP
    Phys Ther; 2010 Apr; 90(4):561-71. PubMed ID: 20167645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoracolumbar spine mechanics contrasted under compression and shear loading.
    Frei H; Oxland TR; Nolte LP
    J Orthop Res; 2002 Nov; 20(6):1333-8. PubMed ID: 12472249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of structural stability of internal fixation in fractures of the thoracolumbar spine.
    Stauffer ES; Neil JL
    Clin Orthop Relat Res; 1975 Oct; (112):159-64. PubMed ID: 1192629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect.
    Gatton ML; Pearcy MJ; Pettet GJ; Evans JH
    J Biomech; 2010 Oct; 43(14):2792-7. PubMed ID: 20709320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study.
    Kouwenhoven JW; Smit TH; van der Veen AJ; Kingma I; van Dieën JH; Castelein RM
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2545-50. PubMed ID: 17978652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine.
    Reinhold M; Schmoelz W; Canto F; Krappinger D; Blauth M; Knop C
    Arch Orthop Trauma Surg; 2009 Oct; 129(10):1375-82. PubMed ID: 19190924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biomechanics research of thoracolumbar vertebral burst fracture in impact damage].
    Bi DW; Wang W; Fei J; Zu G; Cheng YM; Wu W
    Zhongguo Gu Shang; 2010 Oct; 23(10):772-5. PubMed ID: 21137293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body.
    Tan JS; Bailey CS; Dvorak MF; Fisher CG; Cripton PA; Oxland TR
    Spine (Phila Pa 1976); 2007 Feb; 32(3):334-41. PubMed ID: 17268265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When are intervertebral discs stronger than their adjacent vertebrae?
    Skrzypiec D; Tarala M; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2455-61. PubMed ID: 18090085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of bone mineral density after percutaneous kyphoplasty in fresh osteoporotic vertebral body fractures and adjacent vertebrae along with sagittal spine alignment.
    Korovessis P; Zacharatos S; Repantis T; Michael A; Karachalios D
    J Spinal Disord Tech; 2008 Jun; 21(4):293-8. PubMed ID: 18525491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features and thickness of the vertebral cortex in the thoracolumbar spine.
    Edwards WT; Zheng Y; Ferrara LA; Yuan HA
    Spine (Phila Pa 1976); 2001 Jan; 26(2):218-25. PubMed ID: 11154545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analog studies of forces in the human spine: mechanical properties and motion segment behavior.
    Schultz AB; Belytschko TB; Andriacchi TP; Galante JO
    J Biomech; 1973 Jul; 6(4):373-83. PubMed ID: 4732937
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.