BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 20595953)

  • 1. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening.
    Harrison JJ; Stremick CA; Turner RJ; Allan ND; Olson ME; Ceri H
    Nat Protoc; 2010 Jul; 5(7):1236-54. PubMed ID: 20595953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtiter dish biofilm formation assay.
    O'Toole GA
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21307833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm Formation and Quantification Using the 96-Microtiter Plate.
    Thibeaux R; Kainiu M; Goarant C
    Methods Mol Biol; 2020; 2134():207-214. PubMed ID: 32632872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for screening antimicrobial gels against multi-species oral biofilms.
    Chathoth K; Martin B; Bonnaure-Mallet M; Baysse C
    J Microbiol Methods; 2021 Aug; 187():106253. PubMed ID: 34087262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery.
    Kwasny SM; Opperman TJ
    Curr Protoc Pharmacol; 2010 Sep; Chapter 13():Unit 13A.8. PubMed ID: 22294365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents.
    Ali L; Khambaty F; Diachenko G
    Bioresour Technol; 2006 Oct; 97(15):1887-93. PubMed ID: 16256346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Living cells of Staphylococcus aureus immobilized onto the capillary surface in electrochromatography: a tool for screening of biofilms.
    Chen J; Fallarero A; Määttänen A; Sandberg M; Peltonen J; Vuorela PM; Riekkola ML
    Anal Chem; 2008 Jul; 80(13):5103-9. PubMed ID: 18505269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-biofilm Arrays as a Novel Universal Platform for Microscale Microbial Culture and High-Throughput Downstream Applications.
    Srinivasan A; Ramasubramanian AK; Lopez-Ribot JL
    Curr Med Chem; 2019; 26(14):2529-2535. PubMed ID: 30621556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the impact of cultivation conditions and peg surface modification on the
    Diepoltová A; Konečná K; Janďourek O; Nachtigal P
    J Med Microbiol; 2021 May; 70(5):. PubMed ID: 34048334
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.
    Li L; Finnegan MB; Özkan S; Kim Y; Lillehoj PB; Ho CM; Lux R; Mito R; Loewy Z; Shi W
    Mol Oral Microbiol; 2010 Dec; 25(6):384-90. PubMed ID: 21040512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of Staphylococcus aureus biofilm formation by antibiotics in 96-Microtiter Well Plates and Drip Flow Reactors: critical factors influencing outcomes.
    Manner S; Goeres DM; Skogman M; Vuorela P; Fallarero A
    Sci Rep; 2017 Mar; 7():43854. PubMed ID: 28252025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation of Biocides Increases Antimicrobial Potency and Mitigates the Enrichment of Nonsusceptible Bacteria in Multispecies Biofilms.
    Forbes S; Cowley N; Humphreys G; Mistry H; Amézquita A; McBain AJ
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.
    Gomes LC; Silva LN; Simões M; Melo LF; Mergulhão FJ
    J Biomed Mater Res A; 2015 Apr; 103(4):1414-23. PubMed ID: 25044887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial susceptibility testing in biofilm-growing bacteria.
    Macià MD; Rojo-Molinero E; Oliver A
    Clin Microbiol Infect; 2014 Oct; 20(10):981-90. PubMed ID: 24766583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techniques for antifungal susceptibility testing of Candida albicans biofilms.
    Ramage G; López-Ribot JL
    Methods Mol Med; 2005; 118():71-9. PubMed ID: 15888936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates.
    Gomes LC; Moreira JM; Miranda JM; Simões M; Melo LF; Mergulhão FJ
    J Microbiol Methods; 2013 Dec; 95(3):342-9. PubMed ID: 24140575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin microtiter plate lids.
    Tsukatani T; Sakata F; Kuroda R
    World J Microbiol Biotechnol; 2020 Nov; 36(12):189. PubMed ID: 33242145
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ruiz J; Sanjuan E; Amaro C; Gordon M; Villarreal E; Castellanos-Ortega Á; Ramirez P
    J Chemother; 2019 Jul; 31(4):202-208. PubMed ID: 30990368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying implant-associated biofilms: Comparison of microscopic, microbiologic and biochemical methods.
    Doll K; Jongsthaphongpun KL; Stumpp NS; Winkel A; Stiesch M
    J Microbiol Methods; 2016 Nov; 130():61-68. PubMed ID: 27444546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement.
    Volejníková A; Melicherčík P; Nešuta O; Vaňková E; Bednárová L; Rybáček J; Čeřovský V
    J Med Microbiol; 2019 Jun; 68(6):961-972. PubMed ID: 31107198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.