These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 20596174)
1. Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft mold on thin metal film. Zhang Y; Dong X; Du J; Wei X; Shi L; Deng Q; Du C Opt Lett; 2010 Jul; 35(13):2143-5. PubMed ID: 20596174 [TBL] [Abstract][Full Text] [Related]
2. Resolution and stability analysis of localized surface plasmon lithography on the geometrical parameters of soft mold. Zhang Y; Du J; Wei X; Shi L; Deng Q; Dong X; Du C Appl Opt; 2011 May; 50(13):1963-7. PubMed ID: 21532681 [TBL] [Abstract][Full Text] [Related]
3. Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure. Shen CW; Wang JY; Chuang WH; Chen HL; Lu YC; Kiang YW; Yang CC; Yang YJ Nanotechnology; 2009 Apr; 20(13):135202. PubMed ID: 19420488 [TBL] [Abstract][Full Text] [Related]
4. Proximity field nanopatterning of azopolymer thin films. Lambeth RH; Park J; Liao H; Shir DJ; Jeon S; Rogers JA; Moore JS Nanotechnology; 2010 Apr; 21(16):165301. PubMed ID: 20348592 [TBL] [Abstract][Full Text] [Related]
5. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth. Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482 [TBL] [Abstract][Full Text] [Related]
6. Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force. Yoo H; Shin H; Sim B; Kim S; Lee M Nanotechnology; 2009 Jun; 20(24):245301. PubMed ID: 19468166 [TBL] [Abstract][Full Text] [Related]
7. Photolithographic patterning at sub-micrometer scale using a three-dimensional soft photo-mask with application on localized surface plasma resonance. Chen YZ; Wu CY; Lee YC Opt Express; 2014 Apr; 22(7):8376-82. PubMed ID: 24718211 [TBL] [Abstract][Full Text] [Related]
8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
9. Multiple excitation of localized surface plasmon to create a 10 nm x 10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide. Kang SM; Han J; Kim T; Park NC; Park KS; Min BK; Park YP Opt Express; 2010 Jan; 18(2):1576-85. PubMed ID: 20173984 [TBL] [Abstract][Full Text] [Related]
10. SERS-active substrate based on gap surface plasmon polaritons. Kim HC; Cheng X Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510 [TBL] [Abstract][Full Text] [Related]
11. Magnetically tunable surface plasmon resonance based on a composite consisting of noble metal nanoparticles and a ferromagnetic thin film. Wei CM; Chen CW; Wang CH; Chen JY; Chen YC; Chen YF Opt Lett; 2011 Feb; 36(4):514-6. PubMed ID: 21326440 [TBL] [Abstract][Full Text] [Related]
12. Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors. Ekgasit S; Thammacharoen C; Yu F; Knoll W Appl Spectrosc; 2005 May; 59(5):661-7. PubMed ID: 15969812 [TBL] [Abstract][Full Text] [Related]
13. Nanoskiving: a new method to produce arrays of nanostructures. Xu Q; Rioux RM; Dickey MD; Whitesides GM Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870 [TBL] [Abstract][Full Text] [Related]
14. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method. Hwang BS; Kwon MH; Kim J Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures. Chen LQ; Chan-Park MB; Zhang Q; Chen P; Li CM; Li S Small; 2009 May; 5(9):1043-50. PubMed ID: 19235805 [TBL] [Abstract][Full Text] [Related]
16. Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film. Olkkonen J Opt Express; 2009 Dec; 17(26):23992-4001. PubMed ID: 20052110 [TBL] [Abstract][Full Text] [Related]
17. Biological sensing and interface design in gold island film based localized plasmon transducers. Bendikov TA; Rabinkov A; Karakouz T; Vaskevich A; Rubinstein I Anal Chem; 2008 Oct; 80(19):7487-98. PubMed ID: 18754673 [TBL] [Abstract][Full Text] [Related]
18. Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons. Wan X; Wang Q; Tao H J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):973-6. PubMed ID: 20448762 [TBL] [Abstract][Full Text] [Related]
19. Inverted hemispherical mask colloidal lithography. Xu H; Rao W; Meng J; Shen Y; Jin C; Wang X Nanotechnology; 2009 Nov; 20(46):465608. PubMed ID: 19847020 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting. Cui B; Keimel C; Chou SY Nanotechnology; 2010 Jan; 21(4):045303. PubMed ID: 20009206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]