These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 2059620)
1. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Bradley M; Bücheler US; Walsh CT Biochemistry; 1991 Jun; 30(25):6124-7. PubMed ID: 2059620 [TBL] [Abstract][Full Text] [Related]
2. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Henderson GB; Murgolo NJ; Kuriyan J; Osapay K; Kominos D; Berry A; Scrutton NS; Hinchliffe NW; Perham RN; Cerami A Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8769-73. PubMed ID: 1924337 [TBL] [Abstract][Full Text] [Related]
3. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis of parasite trypanothione reductase: acquisition of glutathione reductase activity in a triple mutant. Sullivan FX; Sobolov SB; Bradley M; Walsh CT Biochemistry; 1991 Mar; 30(11):2761-7. PubMed ID: 2007114 [TBL] [Abstract][Full Text] [Related]
5. Molecular studies on trypanothione reductase: an antiparasitic target enzyme. Walsh C; Bradley M; Nadeau K Curr Top Cell Regul; 1992; 33():409-17. PubMed ID: 1354149 [No Abstract] [Full Text] [Related]
6. Active site of trypanothione reductase. A target for rational drug design. Hunter WN; Bailey S; Habash J; Harrop SJ; Helliwell JR; Aboagye-Kwarteng T; Smith K; Fairlamb AH J Mol Biol; 1992 Sep; 227(1):322-33. PubMed ID: 1522596 [TBL] [Abstract][Full Text] [Related]
7. The glutamyl binding site of trypanothione reductase from Crithidia fasciculata: enzyme kinetic properties of gamma-glutamyl-modified substrate analogues. el-Waer AF; Smith K; McKie JH; Benson T; Fairlamb AH; Douglas KT Biochim Biophys Acta; 1993 Nov; 1203(1):93-8. PubMed ID: 8105896 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Bond CS; Zhang Y; Berriman M; Cunningham ML; Fairlamb AH; Hunter WN Structure; 1999 Jan; 7(1):81-9. PubMed ID: 10368274 [TBL] [Abstract][Full Text] [Related]
9. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Fairlamb AH; Blackburn P; Ulrich P; Chait BT; Cerami A Science; 1985 Mar; 227(4693):1485-7. PubMed ID: 3883489 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. Borges A; Cunningham ML; Tovar J; Fairlamb AH Eur J Biochem; 1995 Mar; 228(3):745-52. PubMed ID: 7737173 [TBL] [Abstract][Full Text] [Related]
11. The parasite-specific trypanothione metabolism of trypanosoma and leishmania. Krauth-Siegel RL; Meiering SK; Schmidt H Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784 [TBL] [Abstract][Full Text] [Related]
15. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. Bailey S; Smith K; Fairlamb AH; Hunter WN Eur J Biochem; 1993 Apr; 213(1):67-75. PubMed ID: 8477734 [TBL] [Abstract][Full Text] [Related]
16. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. Saravanamuthu A; Vickers TJ; Bond CS; Peterson MR; Hunter WN; Fairlamb AH J Biol Chem; 2004 Jul; 279(28):29493-500. PubMed ID: 15102853 [TBL] [Abstract][Full Text] [Related]