These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20596312)

  • 1. First-Principles Study of the Band Gap Structure of Oxygen-Passivated Silicon Nanonets.
    Lin L; Li D; Feng J
    Nanoscale Res Lett; 2009 Feb; 4(5):409-413. PubMed ID: 20596312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires.
    Trejo A; Cuevas JL; Salazar F; Carvajal E; Cruz-Irisson M
    J Mol Model; 2013 May; 19(5):2043-8. PubMed ID: 23086456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of oxygen on the surface passivation of InP nanowires.
    Dionízio Moreira M; Venezuela P; Schmidt TM
    Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability, electronic structure, and optical property of surface passivated silicon nanowires: density functional calculation.
    Chen R; Wang L; Lai L; Lu J; Luo G; Zhou J; Gao Z
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1754-9. PubMed ID: 19435036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC.
    Trejo A; Calvino M; Ramos E; Cruz-Irisson M
    Nanoscale Res Lett; 2012 Aug; 7(1):471. PubMed ID: 22913486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
    Monastyrskii LS; Boyko YV; Sokolovskii BS; Potashnyk VY
    Nanoscale Res Lett; 2016 Dec; 11(1):25. PubMed ID: 26768147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconducting Graphene on Silicon from First-Principles Calculations.
    Dang X; Dong H; Wang L; Zhao Y; Guo Z; Hou T; Li Y; Lee ST
    ACS Nano; 2015 Aug; 9(8):8562-8. PubMed ID: 26213346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium effect on the electronic properties of porous silicon for energy storage applications: a DFT study.
    González I; Sosa AN; Trejo A; Calvino M; Miranda A; Cruz-Irisson M
    Dalton Trans; 2018 Jun; 47(22):7505-7514. PubMed ID: 29789836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling.
    Ahmadi MT; Razmdideh A; Rahimian Koloor SS; Petrů M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation- and passivation-dependent stability and electronic properties of α-Si3N4 nanobelts.
    Xiong L; Dai J; Zhong B; Wen G; Song Y
    Phys Chem Chem Phys; 2014 Nov; 16(44):24266-74. PubMed ID: 25297683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect to direct band gap transition in ultra-thin silicon films.
    Lin L; Li Z; Feng J; Zhang Z
    Phys Chem Chem Phys; 2013 Apr; 15(16):6063-7. PubMed ID: 23493906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Approach To Calculate the Band Gap Energy of a Disordered Compound with a Low Symmetry and Large Cell Size via Density Functional Theory.
    Park WB; Hong SU; Singh SP; Pyo M; Sohn KS
    ACS Omega; 2016 Sep; 1(3):483-490. PubMed ID: 31457141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.
    Köhler M; Pomaska M; Lentz F; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2018 May; 10(17):14259-14263. PubMed ID: 29664611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab Initio Study of Octane Moiety Adsorption on H- and Cl-Functionalized Silicon Nanowires.
    Ferrucci B; Buonocore F; Giusepponi S; Shalabny A; Bashouti MY; Celino M
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanonets for biological sensing applications with enhanced optical detection ability.
    Serre P; Stambouli V; Weidenhaupt M; Baron T; Ternon C
    Biosens Bioelectron; 2015 Jun; 68():336-342. PubMed ID: 25599846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.