These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 20596312)
41. Atomic White-Out: Enabling Atomic Circuitry through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface. Huff TR; Labidi H; Rashidi M; Koleini M; Achal R; Salomons MH; Wolkow RA ACS Nano; 2017 Sep; 11(9):8636-8642. PubMed ID: 28719182 [TBL] [Abstract][Full Text] [Related]
42. Band-gap engineering of halogenated silicon nanowires through molecular doping. de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419 [TBL] [Abstract][Full Text] [Related]
43. Material properties and structural characterization of M3Si6O12N2:Eu2+ (M = Ba, Sr)--a comprehensive study on a promising green phosphor for pc-LEDs. Braun C; Seibald M; Börger SL; Oeckler O; Boyko TD; Moewes A; Miehe G; Tücks A; Schnick W Chemistry; 2010 Aug; 16(31):9646-57. PubMed ID: 20669191 [TBL] [Abstract][Full Text] [Related]
44. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Tan CS; Huang MH Chemistry; 2017 Sep; 23(49):11866-11871. PubMed ID: 28696581 [TBL] [Abstract][Full Text] [Related]
45. Clarifying the effects of nanoscale porosity of silicon on the bandgap and alignment: a combined molecular dynamics-density functional tight binding computational study. Sundarapura P; Manzhos S; Ihara M Phys Chem Chem Phys; 2023 May; 25(20):14566-14577. PubMed ID: 37191223 [TBL] [Abstract][Full Text] [Related]
46. Understanding the growth mechanism of titanium disilicide nanonets. Zhou S; Xie J; Wang D ACS Nano; 2011 May; 5(5):4205-10. PubMed ID: 21506560 [TBL] [Abstract][Full Text] [Related]
47. Silicon nanocrystals doping and surface modification. Zhang NB; Tian JX; Li W; Wu LL; Li B; Zhang JQ; Feng LH; Xu M Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):331-4. PubMed ID: 24822395 [TBL] [Abstract][Full Text] [Related]
48. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires. Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454 [TBL] [Abstract][Full Text] [Related]
49. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires. Zhang L; d'Avezac M; Luo JW; Zunger A Nano Lett; 2012 Feb; 12(2):984-91. PubMed ID: 22216831 [TBL] [Abstract][Full Text] [Related]
50. Optical properties of passivated silicon nanoclusters: the role of synthesis. Draeger EW; Grossman JC; Williamson AJ; Galli G J Chem Phys; 2004 Jun; 120(22):10807-14. PubMed ID: 15268108 [TBL] [Abstract][Full Text] [Related]
51. Structural Properties of Al-O Monolayers in SiO Hiller D; Göttlicher J; Steininger R; Huthwelker T; Julin J; Munnik F; Wahl M; Bock W; Schoenaers B; Stesmans A; König D ACS Appl Mater Interfaces; 2018 Sep; 10(36):30495-30505. PubMed ID: 30110151 [TBL] [Abstract][Full Text] [Related]
52. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer. Edmonds M; Kent T; Chagarov E; Sardashti K; Droopad R; Chang M; Kachian J; Park JH; Kummel A J Am Chem Soc; 2015 Jul; 137(26):8526-33. PubMed ID: 26070022 [TBL] [Abstract][Full Text] [Related]
53. Hydrogen Passivated Silicon Grain Boundaries Greatly Reduce Charge Recombination for Improved Silicon/Perovskite Tandem Solar Cell Performance: Time Domain Ab Initio Analysis. Wang S; Fang WH; Long R J Phys Chem Lett; 2019 May; 10(10):2445-2452. PubMed ID: 31034228 [TBL] [Abstract][Full Text] [Related]
54. The structure of electronic states in amorphous silicon. Drabold DA; Stephan U; Dong J; Nakhmanson SM J Mol Graph Model; 1999; 17(5-6):285-91, 330-2. PubMed ID: 10840688 [TBL] [Abstract][Full Text] [Related]
55. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes. Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934 [TBL] [Abstract][Full Text] [Related]
56. Si Fan Q; Chai C; Wei Q; Zhou P; Zhang J; Yang Y Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773409 [TBL] [Abstract][Full Text] [Related]
57. Modeling the surface photovoltage of silicon slabs with varying thickness. Vazhappilly T; Kilin DS; Micha DA J Phys Condens Matter; 2015 Apr; 27(13):134204. PubMed ID: 25767101 [TBL] [Abstract][Full Text] [Related]
58. Tuning the band gap in silicene by oxidation. Du Y; Zhuang J; Liu H; Xu X; Eilers S; Wu K; Cheng P; Zhao J; Pi X; See KW; Peleckis G; Wang X; Dou SX ACS Nano; 2014 Oct; 8(10):10019-25. PubMed ID: 25248135 [TBL] [Abstract][Full Text] [Related]
59. A hybrid density functional study of zigzag SiC nanotubes. Alam KM; Ray AK Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487 [TBL] [Abstract][Full Text] [Related]
60. Surface-state engineering for interconnects on H-passivated Si(100). Kepenekian M; Robles R; Joachim C; Lorente N Nano Lett; 2013 Mar; 13(3):1192-5. PubMed ID: 23432608 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]