These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20596334)

  • 1. Symmetry Properties of Single-Walled BC(2)N Nanotubes.
    Pan H; Feng YP; Lin J
    Nanoscale Res Lett; 2009 Feb; 4(6):498-502. PubMed ID: 20596334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared and Raman active vibrational modes in MoS
    Evarestov RA; Bandura AV
    J Comput Chem; 2018 Oct; 39(26):2163-2172. PubMed ID: 30318757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations.
    Erba A; Ferrabone M; Baima J; Orlando R; RĂ©rat M; Dovesi R
    J Chem Phys; 2013 Feb; 138(5):054906. PubMed ID: 23406148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Family behaviour of Raman-active phonon frequencies of single-wall nanotubes of C, BN and BC3.
    Wang H; Cao X; Feng M; Wang Y; Jin Q; Ding D; Lan G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1932-7. PubMed ID: 18838291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect complexes in carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7021-9. PubMed ID: 23035428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy gaps in "metallic" single-walled carbon nanotubes.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
    Stubrov Y; Nikolenko A; Gubanov V; Strelchuk V
    Nanoscale Res Lett; 2016 Dec; 11(1):2. PubMed ID: 26729220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices.
    Raissi H; Mollania F
    Eur J Pharm Sci; 2014 Jun; 56():37-54. PubMed ID: 24566615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence from Single-Walled MoS
    Liu M; Hisama K; Zheng Y; Maruyama M; Seo S; Anisimov A; Inoue T; Kauppinen EI; Okada S; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2021 May; 15(5):8418-8426. PubMed ID: 33881302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7030-6. PubMed ID: 23035429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.
    Ahadi Z; Shadman M; Yeganegi S; Asgari F
    J Mol Model; 2012 Jul; 18(7):2981-91. PubMed ID: 22160758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The excitonic effects in single and double-walled boron nitride nanotubes.
    Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Jun; 140(24):244701. PubMed ID: 24985662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.
    Rouhi S; Alizadeh Y; Ansari R
    J Mol Model; 2016 Jan; 22(1):41. PubMed ID: 26791535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.