These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20596383)

  • 21. Wetting Behavior of Metal-Catalyzed Chemical Vapor Deposition-Grown One-Dimensional Cubic-SiC Nanostructures.
    Khan A; Huang K; Hu M; Yu X; Yang D
    Langmuir; 2018 May; 34(18):5214-5224. PubMed ID: 29656649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.
    Chu WG; Wang HF; Guo YJ; Zhang LN; Han ZH; Li QQ; Fan SS
    Inorg Chem; 2009 Feb; 48(3):1243-9. PubMed ID: 19128151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties.
    Wu R; Li B; Gao M; Chen J; Zhu Q; Pan Y
    Nanotechnology; 2008 Aug; 19(33):335602. PubMed ID: 21730624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual function of rare earth doped nano Bi2O3: white light emission and photocatalytic properties.
    Dutta DP; Roy M; Tyagi AK
    Dalton Trans; 2012 Sep; 41(34):10238-48. PubMed ID: 22791072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures.
    Park WI; Yoo J; Kim DW; Yi GC; Kim M
    J Phys Chem B; 2006 Feb; 110(4):1516-9. PubMed ID: 16471707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the 2H- to 3C-Type Transformation and Growth Mechanism of SiC Nanowires upon Carbothermal Reduction of Rice Straws.
    Huang CN; Lee JY; Wang CC
    ACS Omega; 2022 Feb; 7(6):5039-5052. PubMed ID: 35187320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defect Related Green-Red Luminescence of Sb-Doped ZnO Nanorods Grown by Vapor-Phase Oxidation Method.
    Tsega M; Dejene FB; Kuo DH
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5785-5789. PubMed ID: 29458640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-dimensional Ce3+- and/or Tb3+-doped X1-Y2SiO5 nanofibers and microbelts: electrospinning preparation and luminescent properties.
    Wang L; Hou Z; Quan Z; Li C; Yang J; Lian H; Yang P; Lin J
    Inorg Chem; 2009 Jul; 48(14):6731-9. PubMed ID: 19522469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process.
    Hou Z; Chai R; Zhang M; Zhang C; Chong P; Xu Z; Li G; Lin J
    Langmuir; 2009 Oct; 25(20):12340-8. PubMed ID: 19583182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of Biomorphic Porous SiC Ceramics from Bamboo by Combining Sol-Gel Impregnation and Carbothermal Reduction.
    Hung KC; Wu TL; Xu JW; Wu JH
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.
    Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe(NO3)3-assisted large-scale synthesis of Si₃N₄ nanobelts from quartz and graphite by carbothermal reduction-nitridation and their photoluminescence properties.
    Liu S; Fang M; Huang Z; Huang J; Ji H; Liu H; Liu YG; Wu X
    Sci Rep; 2015 Mar; 5():8998. PubMed ID: 25757903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of Mg-doped ZnO nanorod arrays.
    Liao HC; Chen SY; Peng CH; Lin CC; Cheng SY
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4696-700. PubMed ID: 21128481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled fabrication and shape-dependent luminescence properties of hexagonal NaCeF4, NaCeF4:Tb3+ nanorods via polyol-mediated solvothermal route.
    Qu X; Yang HK; Pan G; Chung JW; Moon BK; Choi BC; Jeong JH
    Inorg Chem; 2011 Apr; 50(8):3387-93. PubMed ID: 21405110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on the Photoluminescence Properties of Tb Doped Si Nanowires].
    Fan ZD; Zhou ZC; Liu C; Ma L; Peng YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2055-8. PubMed ID: 30035881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of the tube-brush-shaped SiC nanowire array on carbon fiber and its photoluminescence properties.
    Chen J; Wu R; Pan Y
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6550-5. PubMed ID: 21137760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of carbon nanotexture on the synthesis, initial growth mechanism and photoluminescence properties of SiC nanowires.
    Xie X; Su Z; Huang D; Yang C; Wang Y; He K; Huang Q
    Nanotechnology; 2021 Feb; 32(8):085601. PubMed ID: 33166948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of ZnO nanostructures using different metal catalyst: morphology and photoluminescence characteristics.
    Chandra AD; Debdulal K; Fouran S; Kumar AD; Pellegrini G; Ramesh C; Paolo M
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2933-7. PubMed ID: 20355527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of PVP/TbL(phen)0.5 x 7H2O nanorods.
    Cui Z; Ren H; Sun D; Yang M; Hong G
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9787-90. PubMed ID: 22413294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.