These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2059648)

  • 1. Formation of large, membrane skeleton-free erythrocyte vesicles as a function of the intracellular pH and temperature.
    Lelkes G; Fodor I
    Biochim Biophys Acta; 1991 Jun; 1065(2):135-44. PubMed ID: 2059648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B
    Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red cell vesiculation--a common membrane physiologic event.
    Wagner GM; Chiu DT; Yee MC; Lubin BH
    J Lab Clin Med; 1986 Oct; 108(4):315-24. PubMed ID: 3760672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface shape change during fusion of erythrocyte membranes is sensitive to membrane skeleton agents.
    Wu Y; Rosenberg JD; Sowers AE
    Biophys J; 1994 Nov; 67(5):1896-905. PubMed ID: 7858126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-fracture electron microscopic observations on the effects of sulphydryl group reagents on human erythrocyte membranes.
    Benga G; Brain A; Pop VI; Hodarnau A; Wrigglesworth JM
    Cell Biol Int Rep; 1987 Sep; 11(9):679-87. PubMed ID: 3677180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mobility of intramembrane particles in non-haemolysed human erythrocytes. Factors affecting acridine-orange-induced particle aggregation.
    Lelkes G; Fodor I; Lelkes G; Hollán SR
    J Cell Sci; 1986 Dec; 86():57-67. PubMed ID: 3654782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cross-linking of membrane proteins on vesiculation induced by dimyristoylphosphatidylcholine in human erythrocytes.
    Yamaguchi T; Yamada S; Kimoto E
    J Biochem; 1994 Apr; 115(4):659-63. PubMed ID: 8089080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesiculation induced by hydrostatic pressure in human erythrocytes.
    Yamaguchi T; Kajikawa T; Kimoto E
    J Biochem; 1991 Sep; 110(3):355-9. PubMed ID: 1769962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of large (0.5 - 1.0 micron) cytoskeleton-free vesicles from human and rabbit erythrocytes.
    Leonards KS; Ohki S
    Biochim Biophys Acta; 1983 Mar; 728(3):383-93. PubMed ID: 6402012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of chlorpromazine with the human erythrocyte membrane.
    Lieber MR; Lange Y; Weinstein RS; Steck TL
    J Biol Chem; 1984 Jul; 259(14):9225-34. PubMed ID: 6746647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles.
    Gerritsen WJ; Verkleij AJ; Van Deenen LL
    Biochim Biophys Acta; 1979 Jul; 555(1):26-41. PubMed ID: 476098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions.
    Kumar A; Gudi SR; Gokhale SM; Bhakuni V; Gupta CM
    Biochim Biophys Acta; 1990 Dec; 1030(2):269-78. PubMed ID: 2261489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microscopic study of the calcium phosphate-induced aggregation and membrane destabilization of cytoskeleton-free erythrocyte vesicles.
    Fassel TA; Hui SW; Leonards K; Ohki S
    Biochim Biophys Acta; 1988 Aug; 943(2):267-76. PubMed ID: 3401481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-active agents and heat-induced erythrocyte fragmentation.
    Zarkowsky HS
    Br J Haematol; 1982 Feb; 50(2):361-5. PubMed ID: 7059524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts.
    Darmani H; Coakley WT; Hann AC; Brain A
    Cell Biophys; 1990 Jun; 16(3):105-26. PubMed ID: 1698548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformability of isolated red blood cell membranes.
    Heath BP; Mohandas N; Wyatt JL; Shohet SB
    Biochim Biophys Acta; 1982 Oct; 691(2):211-9. PubMed ID: 6814487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-pH association of proteins with the membranes of intact red blood cells. I. Exogenous glycophorin and the CD4 molecule.
    Arvinte T; Schulz B; Cudd A; Nicolau C
    Biochim Biophys Acta; 1989 May; 981(1):51-60. PubMed ID: 2497782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane skeleton and red blood cell vesiculation at low pH.
    Bobrowska-Hägerstrand M; Hägerstrand H; Iglic A
    Biochim Biophys Acta; 1998 Apr; 1371(1):123-8. PubMed ID: 9565664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particle-aggregated ghost membranes.
    Brown D; Montesano R; Orci L
    J Histochem Cytochem; 1982 Jul; 30(7):702-6. PubMed ID: 7108195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.