These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 2059653)
1. Interaction of non-enveloped plant viruses and their viral coat proteins with phospholipid vesicles. Spruijt RB; Böhmer MR; Wilschut J; Hemminga MA Biochim Biophys Acta; 1991 Jun; 1065(2):217-24. PubMed ID: 2059653 [TBL] [Abstract][Full Text] [Related]
2. Modulation of lysozyme charge influences interaction with phospholipid vesicles. Zschörnig O; Paasche G; Thieme C; Korb N; Arnold K Colloids Surf B Biointerfaces; 2005 Apr; 42(1):69-78. PubMed ID: 15784328 [TBL] [Abstract][Full Text] [Related]
3. Membrane activity of the southern cowpea mosaic virus coat protein: the role of basic amino acids, helix-forming potential, and lipid composition. Lee SK; Dabney-Smith C; Hacker DL; Bruce BD Virology; 2001 Dec; 291(2):299-310. PubMed ID: 11878899 [TBL] [Abstract][Full Text] [Related]
4. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles. Pantazatos DP; Pantazatos SP; MacDonald RC J Membr Biol; 2003 Jul; 194(2):129-39. PubMed ID: 14502437 [TBL] [Abstract][Full Text] [Related]
5. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles. Menestrina G; Pederzolli C; Forti S; Gambale F Biophys J; 1991 Dec; 60(6):1388-400. PubMed ID: 1723312 [TBL] [Abstract][Full Text] [Related]
6. Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein. Cajal Y; Boggs JM; Jain MK Biochemistry; 1997 Mar; 36(9):2566-76. PubMed ID: 9054563 [TBL] [Abstract][Full Text] [Related]
7. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207 [TBL] [Abstract][Full Text] [Related]
8. Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers. Mattjus P; Pike HM; Molotkovsky JG; Brown RE Biochemistry; 2000 Feb; 39(5):1067-75. PubMed ID: 10653652 [TBL] [Abstract][Full Text] [Related]
9. The in situ aggregational and conformational state of the major coat protein of bacteriophage M13 in phospholipid bilayers mimicking the inner membrane of host Escherichia coli. Spruijt RB; Hemminga MA Biochemistry; 1991 Nov; 30(46):11147-54. PubMed ID: 1932035 [TBL] [Abstract][Full Text] [Related]
10. Interaction of negatively charged liposomes with nuclear membranes: adsorption, lipid mixing and lysis of the vesicles. Lawaczeck R; Nandi PK; Nicolau C Biochim Biophys Acta; 1987 Sep; 903(1):123-31. PubMed ID: 2443167 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of electrostatic and hydrophobic effects on the interaction of mitochondrial signal sequences with phospholipid bilayers. Wang Y; Weiner H Biochemistry; 1994 Nov; 33(43):12860-7. PubMed ID: 7947692 [TBL] [Abstract][Full Text] [Related]
12. Interaction of wheat alpha-thionin with large unilamellar vesicles. Caaveiro JM; Molina A; Rodríguez-Palenzuela P; Goñi FM; González-Mañas JM Protein Sci; 1998 Dec; 7(12):2567-77. PubMed ID: 9865951 [TBL] [Abstract][Full Text] [Related]
13. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements. Mancheño JM; Gasset M; Lacadena J; Ramón F; Martínez del Pozo A; Oñaderra M; Gavilanes JG Biophys J; 1994 Sep; 67(3):1117-25. PubMed ID: 7811923 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
15. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. Núñez E; Yélamos B; Delgado C; Gómez-Gutiérrez J; Peterson DL; Gavilanes F Biochim Biophys Acta; 2009 Feb; 1788(2):417-24. PubMed ID: 19026610 [TBL] [Abstract][Full Text] [Related]
16. Interaction of myelin basic protein with artificial membranes. Parameters governing binding, aggregation and dissociation. ter Beest MB; Hoekstra D Eur J Biochem; 1993 Feb; 211(3):689-96. PubMed ID: 7679637 [TBL] [Abstract][Full Text] [Related]
17. Interaction of dextran sulfate with phospholipid surfaces and liposome aggregation and fusion. Arnold K; Ohki S; Krumbiegel M Chem Phys Lipids; 1990 Sep; 55(3):301-7. PubMed ID: 2289288 [TBL] [Abstract][Full Text] [Related]
18. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
19. Effect of phospholipid bilayer phase asymmetry on phospholipase d reaction-induced vesicle rupture. Park JW J Membr Biol; 2011 Nov; 244(2):55-9. PubMed ID: 21984187 [TBL] [Abstract][Full Text] [Related]
20. The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration. Speelmans G; Sips WH; Grisel RJ; Staffhorst RW; Fichtinger-Schepman AM; Reedijk J; de Kruijff B Biochim Biophys Acta; 1996 Aug; 1283(1):60-6. PubMed ID: 8765095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]