These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 2059665)
1. The effect of point mutations on energy profiles in a model of the nicotinic acetylcholine receptor (AChR) channel. Furois-Corbin S; Pullman A Biophys Chem; 1991 Feb; 39(2):153-9. PubMed ID: 2059665 [TBL] [Abstract][Full Text] [Related]
2. Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Tamamizu S; Guzmán GR; Santiago J; Rojas LV; McNamee MG; Lasalde-Dominicci JA Biochemistry; 2000 Apr; 39(16):4666-73. PubMed ID: 10769122 [TBL] [Abstract][Full Text] [Related]
3. Pore size and negative charge as structural determinants of permeability in the Torpedo nicotinic acetylcholine receptor channel. Wang F; Imoto K Proc Biol Sci; 1992 Oct; 250(1327):11-7. PubMed ID: 1281328 [TBL] [Abstract][Full Text] [Related]
4. Energy profiles in the acetylcholine receptor (AChR) channel. The MII-helix model and the role of the remaining helices. Furois-Corbin S; Pullman A FEBS Lett; 1989 Jul; 252(1-2):63-8. PubMed ID: 2547652 [TBL] [Abstract][Full Text] [Related]
5. Tryptophan substitutions reveal the role of nicotinic acetylcholine receptor alpha-TM3 domain in channel gating: differences between Torpedo and muscle-type AChR. Navedo M; Nieves M; Rojas L; Lasalde-Dominicci JA Biochemistry; 2004 Jan; 43(1):78-84. PubMed ID: 14705933 [TBL] [Abstract][Full Text] [Related]
6. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. Imoto K; Konno T; Nakai J; Wang F; Mishina M; Numa S FEBS Lett; 1991 Sep; 289(2):193-200. PubMed ID: 1717313 [TBL] [Abstract][Full Text] [Related]
7. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Zanello LP; Aztiria E; Antollini S; Barrantes FJ Biophys J; 1996 May; 70(5):2155-64. PubMed ID: 9172739 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical and immunological studies of the N-terminal domain of the Torpedo acetylcholine receptor alpha-subunit expressed in Escherichia coli. Alexeev T; Krivoshein A; Shevalier A; Kudelina I; Telyakova O; Vincent A; Utkin Y; Hucho F; Tsetlin V Eur J Biochem; 1999 Jan; 259(1-2):310-9. PubMed ID: 9914508 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan substitutions at the lipid-exposed transmembrane segment M4 of Torpedo californica acetylcholine receptor govern channel gating. Lasalde JA; Tamamizu S; Butler DH; Vibat CR; Hung B; McNamee MG Biochemistry; 1996 Nov; 35(45):14139-48. PubMed ID: 8916899 [TBL] [Abstract][Full Text] [Related]
10. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Chiara DC; Xie Y; Cohen JB Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488 [TBL] [Abstract][Full Text] [Related]
11. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues alphaArg55 and gammaGlu93. Kapur A; Davies M; Dryden WF; Dunn SM FEBS J; 2006 Mar; 273(5):960-70. PubMed ID: 16478470 [TBL] [Abstract][Full Text] [Related]
12. Solution conformation of the antibody-bound tyrosine phosphorylation site of the nicotinic acetylcholine receptor beta-subunit in its phosphorylated and nonphosphorylated states. Phan-Chan-Du A; Hemmerlin C; Krikorian D; Sakarellos-Daitsiotis M; Tsikaris V; Sakarellos C; Marinou M; Thureau A; Cung MT; Tzartos SJ Biochemistry; 2003 Jun; 42(24):7371-80. PubMed ID: 12809492 [TBL] [Abstract][Full Text] [Related]
14. Conductance mutations of the nicotinic acetylcholine receptor do not act by a simple electrostatic mechanism. Kienker P; Tomaselli G; Jurman M; Yellen G Biophys J; 1994 Feb; 66(2 Pt 1):325-34. PubMed ID: 8161686 [TBL] [Abstract][Full Text] [Related]
15. Alpha-conotoxin residues that interact at close range with gamma-tyrosine-111 and mutant delta-tyrosine-113 on the Torpedo nicotinic acetylcholine receptor. Vélez-Carrasco W; Valdés S; Agresar L; Lettich A; Guerra AY; Hann RM Biochemistry; 2004 Oct; 43(39):12700-8. PubMed ID: 15449960 [TBL] [Abstract][Full Text] [Related]
16. Design, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor. Montal MO; Iwamoto T; Tomich JM; Montal M FEBS Lett; 1993 Apr; 320(3):261-6. PubMed ID: 7681786 [TBL] [Abstract][Full Text] [Related]
17. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Imoto K; Busch C; Sakmann B; Mishina M; Konno T; Nakai J; Bujo H; Mori Y; Fukuda K; Numa S Nature; 1988 Oct; 335(6191):645-8. PubMed ID: 2459620 [TBL] [Abstract][Full Text] [Related]
18. A possible model for the inner wall of the acetylcholine receptor channel. Furois-Corbin S; Pullman A Biochim Biophys Acta; 1989 Sep; 984(3):339-50. PubMed ID: 2476184 [TBL] [Abstract][Full Text] [Related]
19. Residues in the epsilon subunit of the nicotinic acetylcholine receptor interact to confer selectivity of waglerin-1 for the alpha-epsilon subunit interface site. Molles BE; Tsigelny I; Nguyen PD; Gao SX; Sine SM; Taylor P Biochemistry; 2002 Jun; 41(25):7895-906. PubMed ID: 12069578 [TBL] [Abstract][Full Text] [Related]
20. An alpha-bungarotoxin-binding sequence on the Torpedo nicotinic acetylcholine receptor alpha-subunit: conservative amino acid substitutions reveal side-chain specific interactions. McLane KE; Wu X; Conti-Tronconi BM Biochemistry; 1994 Mar; 33(9):2576-85. PubMed ID: 8117719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]